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Abstract—The principles of biomedical ultrasound beam forming control the quality of diagnostic imaging.
Beam parameters associated with imaging quality are: (1) lateral and axial resolutions; (2) depth of field;
(3) contrast and (4) frame rate. In this paper, we review some of the current beam forming techniques and
their principles. We focus on trade-offs among the above four aspects of beam forming and relate them to
system parameters such as aperture size, f~-number (the ratio between focal length and aperture diameter),
central frequency (wavelength), system bandwidth and sidelobes. Methods for steering conventional and
limited diffraction beams with array transducers are also reviewed.
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INTRODUCTION

Beam-forming technique plays one of the most im-
portant roles in ultrasonic imaging. In this paper, we
review some of the current conventional beams and
recently developed limited diffraction beams, and de-
scribe the trade-offs among some beam parameters,
such as resolution, sidelobes, frame rate, central fre-
quency, bandwidth, aperture and depth of field. The
main difference between these two types of beams is
that the former usually focuses at a fixed or varying
point, while the latter tend to focus in a line along their
propagation direction.

Conventional focused beams have lower sidelobes
within the range of a short depth of field. Away from
this range, images obtained may blur quickly due to
the increase of the lateral beamwidth. One effective
way to increase the depth of field while maintaining the
low sidelobes is to use dynamically focused reception,
which increases the focal length of the receiving beam
electronically with time, so that echoes returned from
all depths within the tissue are continuously in focus.
The idea of dynamic focusing can also be applied to
transmission of beams to further increase the depth of
field by transmitting several pulse sequences, each of
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which focuses at a different point. Obviously this pro-
cess improves the imaging quality but reduces the
frame rate significantly.

In contrast to conventional beams, limited diffrac-
tion beams have large depth of field, good focus, but
high sidelobes. The deep depth of field is paid for by
high sidelobes. The high sidelobes can be suppressed
by subtracting different types of beams that have no
central lobes but similar sidelobes. Thus, low sidelobes
can be obtained with limited diffraction beams but at
the expense of frame rate. However, using both limited
diffraction transmission and conventional dynamically
focused reception in pulse-echo imaging may combine
the advantages of the two types of beams to produce
high frame rate, large depth of field and low sidelobe
images (Lu et al. 1993).

This paper is organized as follows: in the next
section, we begin by reviewing some of the conven-
tional beam-forming techniques. Trade-offs of differ-
ent aspects of beam forming are also discussed. Next,
theory and production of limited diffraction beams will
be reviewed by deriving a general class of special solu-
tions to the isotropic/homogeneous scalar wave equa-
tion. Techniques for sidelobe reduction will also be
discussed. Methods of beam steering are summarized
next. Finally, a brief discussion and conclusion will
be made.
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Fig. 1. Coordinate system used for eqn (1) to calculate fields in space. Wave sources are located in the plane, z
= (. Fields are calculated at 7, = #y(xo, Yo, 2)- Modified with permission from Fig. B-1 of Lu and Greenleaf 1993b.
© 1993 IEEE.

CONVENTIONAL BEAM FORMING

The study of beam forming began in 1678 by
Huygens, who gave an intuitive postulation of beam
formation using wavelets. This postulation was im-
proved by Fresnel in 1818 with a quantitative descrip-
tion. Later, more accurate formulas such as the Ray-
leigh—Sommerfeld diffraction formula were developed
in optics. In this section, we review the basic concepts
of various conventional beam-forming techniques. Dis-
cussions can be found in Goodman’s and Kino’s books
(Goodman 1968; Kino 1987).

Rayleigh—Sommerfeld diffraction formula

Basic principles of beam forming are given by the
Rayleigh—Sommerfeld diffraction formula that was
developed in optics (Goodman 1968). The formula can
accurately predict the field (pressure or velocity poten-
tial) at any spatial point, 7y = (X, Yo. 2), produced
by a finite aperture (Fig. 1). Specifically, suppose the
aperture is a disc with radius a, then we have

~ 1 Gl L. :
BFy, w) = = f f D7, wye™ o rzi ridride,
0 -7

i 3!

1 a L . .
+ EJ; ’L B(7, wyetn Pi rdrdd:, (1)
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where the first and second terms represent high and
low frequency contributions, respectively, a transducer
is located at the plane, z = 0, &(#,, w) is the Fourier
transform of the wave field, ®(¥, 1), at the spatial point
o, Q:)(f], w) denotes the Fourier transform of a complex
aperture weighting function, ®(#,, r), applying at a

source point 7, = (x;, y;, 0) on the surface of the
transducer, r; = Vx; + yi, ¢; = tan"'(y,/x;), A is wave-
length, w = 2xf, is angular frequency, where f; is
frequency, k = 2n/\ = w/c denotes the wave number,
where ¢ is the speed of wave in the medium, and ry,
is the distance between the field point ¥, and the source
point #;, which is given by

o1 = \/(xo - x1)2 + (o — }’1)2 + 2 (2)

Ecjuation (1) involves two double integrals. There-
fore, its computation is usually time consuming. Ef-
forts have been devoted to simplify eqn (1) under cer-
tain conditions. Note that when ry, > M(21), which is
usually satisfied in practical beam forming, the second
term in.eqgn (1) is negligible. Furthermore, in the Fres-
nel region where r; and ry, <€ Vrj + z°, and where r,
= Vx3 + V3, for some aperture weighting functions of
&(#,, w), the double integration in eqn (1) can be sim-
plified to a single one by using the Fresnel approxima-
tion (Goodman 1968). In the far field (Fraunhofer re-
gion) of the transducer, where r, == z, and z >
kri/2, the field is related to the Fourier transform of
the transducer aperture (Goodman 1968). For some
special aperture weighting functions such as the uni-
form functions with or without focusing, a simplified
formula for eqn (1) can be obtained without using the
Fresnel or Fraunhofer approximation (Lin et al. 1989).

Conventional beams

Unfocused piston transducer. The simplest ultra-
sonic transducer is an unfocused piston transducer
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Fig. 2. A beam produced with a piston transducer. The beam has little spreading within the Rayleigh distance

and has a beamwidth about as wide as the diameter of transducer D = 2a. The whole aperture of the transducer

is excited by the same voltage (no weighting). After the Rayleigh distance, the beam spreads out at an angle 4
= sin" (0.6 1N a).
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(Fig. 2) that consists of a piezoelectric disc with thin
electrodes deposited on both sides of the disc. Electri-
cal signals are applied to or produced from the elec-
trodes. The transducer is uniformly weighted (un-
weighted, &7, w) = 1 in eqn (1)) and its surfaces
vibrate like an engine piston when excited by an elec-
trical signal. The main beamwidth produced by this
transducer is approximately the same as the diameter
of the transducer, D, in the depth of field that is defined
as the Rayleigh distance (Durnin et al. 1987)

szax = T (3)

where a and \ denote the radius and central wavelength
of the transducer. At the Rayleigh distance, the ampli-
tude of field pressure drops to about one half of that
on the transducer surface (Wells 1977).

In the far field where the Fraunhofer approxima-
tion is valid, the lateral field pattern (Airy pattern) of
the beam produced by the unfocused piston transducer
is proportional to the Fourier transform of the aperture
(assumed to be a disc) of the transducer and can be
derived from eqn (1) as (Goodman 1968)

4

@(?‘0, o = %-2 em(zr%&z)[z Jl(kaFU/Z)]
1£Z

karylz

where J,(-) is the first-order B‘f:ssel function of the first
kind. The first minimum of |®(#, w)| along the radius
is at

ro = 0.61 % . (5)

Equation (5) represents half of the main beamwidth
of the unfocused piston transducer. Hence the main
beamwidth increases with the axial distance, z, for a
given central wavelength, A, and decreases as the size
of aperture of the transducer, a, increases. The beam
spreading is the result of wave diffraction.

Focused piston transducer. Consequently, the lat-
eral beamwidth of the above unfocused piston trans-
ducer is very large and the lateral resolution of the
images obtained with such a transducer is low. The
main, beamwidth of a piston transducer, equivalently
the lateral resolution of images, can be greatly im-
proved if the spherical-focusing technique in optics is
applied. The field of a focused piston transducer can
be calculated by eqn (1) with the following aperture
weighting function that is a spherical phase shifter
along the radial distance, r;:

B3, w) = D, ©

where F is the focal length of the transducer. Under
the Fresnel approximation, one obtains the field in the
focal plane from egn (1) (Goodman 1968)

(7)

3G, ) [2 J](karolF)]
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where the first minimum of |®(7,, w)| along the radius
is at

ro = 0.61 % = 1.22)\f, (8)

in which f = F/(2a) is defined as an f~number. It implies
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that the main beamwidth increases with the f~number
for a given central wavelength. Hence, a beam cannot
be properly focused with a larger f~number or the lat-
eral resolution cannot be improved by focusing a beam
with a focal length that is in the Fraunhofer region,
where eqns (5) and (8) are identical.

Focused Gaussian-weighted transducer. Al-
though a focused piston transducer can reduce the
beamwidth at its focus, its sidelobes are not reduced
(compare eqns (4) and (7)). To suppress the sidelobes,
various forms of the aperture weighting function,
O(#, w), of eqn (1) can be applied. As an example,

o _ 2. 2, .2
B(h, w) = IO ©

gives a focused Gaussian-weighted beam. In this case,
the field distribution (either the pressure or velocity
potential) on the surface of the transducer is a Gaussian
function e“’zlf‘fz, where o denotes the radius at which
the field amplitude drops to 1/e of its maximum. The
Gaussian weighted beam can also be characterized by
the full width at half maximum (FWHM) of the
Gaussian function at the transducer surface. The
FWHM is related to o by

FWHMrg|,=0 = 2VIn 20 =~ 1.670, (10)

where “‘FG’’ stands for focused Gaussian. Under both
the Fresnel approximation and paraxial condition (field
observed is not too far away from the axis), the lateral
profile of a Gaussian beam (assume that o* < 4°) in
the focal plane is still proportional to a Gaussian func-
tion (Lu and Greenleaf 1990b), e.g.,

AF

(o, w) = e*’f'/ (E) (11)

The Gaussian beam specified by eqn (11) has lower
sidelobes because the Gaussian function approaches
zero faster as the radial distance increases.

Similar to the beam produced by a focused piston
transducer, the Gaussian beam can not be properly
focused if

Fose— (12)

where mo?/\ is called the Rayleigh distance of an unfo-
cused Gaussian beam and o is called the effective
radius of the aperture. From eqn (11), it is obvious
that the beamwidth at z = F = wo*/\ is the same as
that at the transducer surface (eqn (9)).
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Because o << a, the effective aperture size of the
Gaussian transducer is smaller than that of the piston
transducer with the same radius, a. The reduced effec-
tive aperture size of the Gaussian transducer increases
the FWHM of the beam in the focal plane. Therefore,
the lower sidelobes gained by the Gaussian beam are
at the expense of the larger lateral beamwidth (or lower
lateral imaging resolution). However, because the
Gaussian transducer has a lower field amplitude at its
edge than the piston transducer, edge waves are lower
in the Gaussian beam than in the piston beam. (Edge
waves are produced by an abrupt truncation of the field
at the edges of transducers. They exist everywhere in
some transducer geometries except at the foci of beams
and might cause ghosts in imaging (Krautkramer and
Krautkramer 1975).)

Trade-offs between lateral beamwidth and depth of
field

For analytical simplicity and without the loss of
generality, the focused Gaussian beam is used for
studying the trade-offs between the lateral beamwidth
and depth of field. If the depth of field of the focused
Gaussian beam is defined as the distance between two
out-of-focus planes in which the beamwidths increase
to v2 times that in the focal plane (Fig. 3), we have
(Kino 1987; Lu and Greenleaf 1990b)

sznx

(13)

where F must be so small that the above two out-
of-focus planes exist simultaneously (z = 0 must be
satisfied for the out-of-focus planes), i.e.,

F= (14)

o’
A

sy

Neglecting the term, (2/(ka))?, in the denominator of
eqn (13), one obtains

2 2
G = 2(A—FZ) 1+ 2(”’2) ENGE)!
Fixe) TT

On the other hand, from eqn (11) the FWHM of the
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Fig. 3. Focused Gaussian beams produced with Gaussian aperture weighting. With the same effective radius
of aperture, o, a shorter focal length produces a beam of a smaller beamwidth at focus, but has a shorter
depth of field.

Gaussian beam at focus becomes

2 AF
FWHMic oor = (— Jin z) M sossE. s
iy a a

Trade-offs between the lateral beamwidth (lateral
imaging resolution) in the focal plane of a focused
Gaussian beam and the depth of field are demonstrated
by eqns (15) and (16). In particular, for a given central
wavelength, \, to increase the lateral resolution (reduce
FWHM in the focal plane), the effective f-number, F/
o, must be reduced. However, this reduces the depth
of field. Furthermore, for a given effective f~number,
the diffraction of Gaussian beam is stronger as the
central wavelength increases. This lowers the lateral
imaging resolution but increases the depth of field.

Therefore, to obtain higher resolution in diagnos-
tic ultrasound imaging, high frequency (small central
wavelength) is desirable. However, the highest fre-
quency used must be limited by the penetration depth
of ultrasound in biological soft tissues in which higher
frequencies have larger attenuation.

Increasing depth of field

Dynamically focused reception. When the Fresnel
approximation, paraxial condition, and o® < a* are
satisfied, the FWHM of a focused Gaussian beam at
distance, z, is given by (Lu and Greenleal 1990b)

FWHMrq) .-,
—ZVInZ\/(k) +( )(z Fy . (a7

The above equation infers that the lateral beamwidth
varies with both z (first term) and the off-focus dis-
tance, |z — F| (second term), and that the FWHM
reaches a minimum at z = [1/(1 + (FM(ma?)))]F <
F. To focus effectively, F must be much less than wo®/
A. In this case, z ~ F and eqn (17) is identical to
eqn (16).

One effective way to increase the depth of field
in biomedical diagnostic imaging without sacrificing
the lateral beamwidth is called dynamically focused
reception (Fig. 4), in which the focal length of an array
transducer receiving system is changed with time so
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Fig. 4. Schematic of dynamic focusing in reception. The focal length of a transducer is increased
with time so that echoes from various depths are in focus.

that echoes from all depths are always in focus. This
process is equivalent to keeping z ~ F for all F and
obtaining the minimum FWHM (or highest lateral res-
olution) in imaging over a large depth of field.

When z = F, the lateral beamwidth changes lin-
early with F or z (eqn (16)). If the depth of field for
the dynamically focused reception is defined as the
distance between the two planes in which the beam-
width at focus is decreased or increased by V2, we
obtain

GZ. = FA2, (18)

where the superscript ‘‘D*’ means dynamic focusing
and F is a reference focal length. The depth of field
given by eqn (18) is much larger than that calculated
from eqn (13). For example, if F = 120 mm, we have
GZ3.. = 84.85 mm. In contrast, if A = 0.6 mm and o
= 15 mm, the depth of field calculated from eqn (13)
is only 24.44 mm for the same F.

Because of the above reasons, dynamically fo-
cused reception has been widely used in modern com-
mercial diagnostic imaging equipment. Because the
change of focal length in reception can be done elec-
tronically in real-time, the process does not reduce
imaging frame rate.

Dynamically focused transmission. The same dy-
namic focusing idea can also be applied to transmission
of beams. It can be shown that the lateral resolution
of images can be further improved, and the sidelobes

of beams further suppressed, if dynamic focusing is
used in both transmission and reception. This advan-
tage is due to the fact that the lateral beam profile
of a transmission-reception (pulse-echo) system is the
product of the profiles of transmission and of reception.

The disadvantage of this approach is that beams
of different focal lengths can only be transmitted one
by one, and retransmission of the second beam must
wait until all echoes produced by the previous one
return to the transducer. Otherwise, echoes produced
from the second beam coming from shallower tissues
may arrive at the same time as those produced by the
first beam coming from deeper tissues, thus producing
a false representation of structures in imaging.

Dynamically focused transmission is performed
with a montage process where images obtained with
different transmission focal lengths are cut around their
focal lengths and mounted next to each other to form
a new frame of image (Fig. 5). It is obvious that this
process increases the time to form a frame of image.
Montage using an infinite number of images obtained
around all focal depths would produce an image of the
highest quality, however, this would require an infinite
amount of time and have a zero imaging frame rate.
Therefore, in practice, one needs to consider the trade-
off between the quality of images and the frame rate.
In cardiac imaging, dynamically focused transmission
is usually not used because of the need for high frame
rate.

Ring transducer. Another way to increase the
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Fig. 5. The montage process that is used in ultrasound scanners for medical imaging. Images obtained with
different transmission foci are cut and mounted next to each other to form an image with large depth of field.
This process reduces imaging frame rate.

depth of field is to simply use a ring transducer (a thin
ring) (Wild, 1965; Burkhardt et al. 1973a). On the
axis near the source plane where the ring transducer
is located, the field distribution in the lateral direction
is complex and the field has no central maximum.
However. in the Fraunhofer region (far field), the field
in the lateral direction is proportional to the Fourier
transform of the transducer aperture (a ring) and has
a central maximum. The aperture weighting function
of a ring transducer can be defined as

b, w) = 6(r, — a), (19)

where § is a Dirac-Delta function, and a is the diameter
of the ring. If z > r, and z > r;, from eqn (1) the
lateral field distribution of the ring transducer can be
derived:

” 2 (L b
‘p(?’o, LL)) = % EIT(L+ 2z )Jn(zﬂ-f 7'0) 5 (20)

where J, is the zero®-order Bessel function of the first

kind. The FWHM of the main lobe width of the zero"-
order Bessel function can be obtained from eqn (20):

FWHM, ~ 048 2 . 1)
a

Similar to eqns (5), (8), or (16), this equation demon-
strates that for a given central wavelength, the FWHM
of the beam produced by a ring transducer is a linear
function of the ratio of the axial distance and the radius
of the transducer.

Because the FWHM increases monotonically with
z in eqn (21), the depth of field can also be defined as
the distance between the two planes in which the
FWHM increases or decreases to \ﬁ times that at a
reference axial distance. Therefore, the depth of field
of the ring transducer is large and is given by eqn (18)
with F replaced by z. However, energy efficiency of
the ring transducer is rather low because only a small
portion of the aperture is used (a thin ring). On the
other hand, because the large depth of field of the
ring transducer is formed at a large axial distance, the
FWHM is also large (or the lateral resolution is low)
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Fig. 6. Schematic of an Axicon transducer system evaluated by Fishell et al. (1990) in a clinic on female breasts.
The cone has a large angle, { = 37.5° and thus has a high lateral resolution. It is used in transmission and has
a large depth of field (focal zone: 90 ~ 170 mm). Because the cone has a huge diameter (about 150 mm), beams
produced may be distorted severely in the breast tissues because of phase aberration. In reception, a smaller 5-
element annular array transducer (50 mm diameter) is used to perform dynamic focusing (Foster et al. 1983).

except when the ring radius is large (eqn (21)). How-
ever, a large ring radius is not only inconvenient for
medical diagnostic imaging, but could cause severe
beam distortion due to tissue inhomogeneities (phase
aberration) (Foster and Hunt 1979; Trahey et al. 1991).
In addition, the sidelobes of the ring transducer (egn
(20)) are higher than those of the focused piston and
Gaussian transducers (eqns (7) and (9)). The high side-
lobes will lower contrast in medical imaging.

Axicon transducer. Another way to increase the
depth of field is to use a conic device that is called
the Axicon. The first Axicon was discovered in optics
(McLeod 1954) and later applied to acoustics by
Burckhardt et al. (1973b). Since then, the Axicon has
been studied for medical imaging by many other inves-
tigators (Dietz 1982; Foster et al. 1981, 1983; Fujiwara
1962; Hunt et al. 1983; Moshfeghi 1988; Patterson and
Foster 1982; Yamada and Shimizu 1983). A recent
paper (Fishell et al. 1990) summarized the clinical trial
of a ‘“‘hybrid”” Axicon system on patients with the
hypothesis that the increased lateral resolution of a
large Axicon transducer would lead to improved detec-
tion of smaller lesions and could thus contribute to the
early detection of breast cancers. However, it turns out
that the hypothesis is not true with the hybrid Axicon
system after studying 1700 patients over 4 years. The
system consisted of an Axicon of a maximum diameter
of about 150 mm, an angle (Axicon angle is an angle
between the cone and a transverse plane) of 37.5°, and
focal zone from z = 90 ~ 170 mm (Fig. 6). The
Axicon was made of a thin aluminum cone with the
piezoelectric material (PVDF) attached to the inner
surface of the cone (the PVDF was divided into eight

sectors to perform signal processing for speckle reduc-
tion (Patterson et al. 1981; Kerr et al. 1986)). The
FWHM of the Axicon beam was 0.3 mm and the cen-
tral operating frequency was 4 MHz. In reception, a 5-
element, 50 mm diameter dynamically focused annular
array was used. This system was not operated in real
time. One of the main reasons of the failure of the
clinical application of the system might be the use of
such a large diameter Axicon that has caused a severe
distortion of the Axicon beam (phase aberration) in
strongly inhomogeneous breast tissues (Foster and
Hunt 1979; Trahey et al. 1991).

With CW excitation, the lateral distribution of the
field of an unweighted Axicon in the focal zone can
be derived from eqn (1) (under some assumptions, Pat-
terson and Foster 1982)

i 2w g
O(Fy, w) = 27 sin Q\/@ Jge"(fzcosfa— Z)

. Jo(z%- rosin C) . (22)

where { is the Axicon angle. It is seen that for a given
central wavelength, A, the lateral beamwidth in the
focal zone depends only on the Axicon angle that is a
constant for a given Axicon transducer. Therefore, an
Axicon with a large angle can have a very sharp focus
and produce a depth-independent high lateral resolu-
tion in imaging over the focal zone. The depth of field
(the focal zone) is large for Axicons and is related to
the maximum diameter of the cone (Fig. 6).
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Unlike a conventional focused beam where its
field strength peaks around the focus, the field strength
of an unweighted Axicon increases with the axial dis-
tance in the focal zone (proportional to Vz). However,
the increase of the field strength could be compensated
by applying a weighting along its radius (Dietz 1982).
Equation (22) implies that the sidelobes of an Axicon
are determined by the J; Bessel function, and are the
same as those of a ring transducer (eqns (20)).

It is interesting to note here that Axicons produce
waves similar to X waves (Lu and Greenleaf 1992a),
which are limited diffraction beams and will be dis-
cussed in the next section. An X wave consists of two
cones of pressure connected at their peak that are
formed electrically by driving different signals at dif-
ferent radial distances of a transducer. The driving sig-
nals are obtained from the theoretical pressure distribu-
tion of the X wave evaluated at the surface of the
transducer (z = 0). The ‘‘focal zones’’ of X waves
start from the apex of the cones (or the surface of the
transducer). In practical applications, the X waves are
produced with an annular array transducer with a small
Axicon angle (a few degrees rather than around 40
degrees for an Axicon). Because an annular array is
used, echoes from tissues can be received with the
same array in either a limited diffraction or dynamic
focusing mode. This enables the X waves to be used
in real-time imaging (using a commercial mechanical
wobbler) with large depth of field and reasonable side-
lobes (Lu et al. 1993). "

Axial resolution

Another important factor for controlling the qual-
ity of pulse-echo imaging is the axial resolution. In
general, a shorter pulse length produces a better axial
resolution. Short pulses contain multiple frequency
components and can only be produced by broadband
transducers. If a transducer can be modeled approxi-
mately as a mass suspended by a spring moving in a
lightly damped medium, the —3 dB bandwidth of the
transducer is given by J. Krautkramer and H. Kraut-
kramer (1975)

BW = —, (23)

where £, is the resonant frequency of the transducer
and

Ad
s PN . 15 (24)
Adyw Innm

is called the quality factor, where Ad, and Ad,,, are
the amplitude (at f,) and the static thickness change

(at zero frequency), respectively, and 7 is a damping
coefficient. The damping coefficient is determined by
the decay of the amplitudes of the free oscillation of
the transducer after a brief excitation, i.e., n = A/A,,
where A, and A, are the amplitudes of the first and
second cycle of the oscillation, respectively. In typical
medical imaging where a transducer is sandwiched
with a backing and a front matching material, the
damping coefficient is also given by

(Zo+ ZNZo + 2
(Zo— Z)Zo = Z)°

(Zo + ZY(Zo + Z)°
(Zo — ZV(Zo — Z)’

fZy>Z,&Z, o0 Zy < Z, & 7

ifZ!,>ZQ>%¢,O['Z},<Z()<Zf
(25)

where Z,, Z, and Z; are the acoustic characteristic im-
pedances (density of a mass multiplied by speed of
sound) of the transducer, backing and front matching
materials, respectively (damping due to friction loss is
not included). The resonant frequency of the trans-
ducer, f,, is usually different from the characteristic
frequency of the transducer

]
Jo=15, (26)

where ¢, and d are the speed of sound and thickness
of the transducer, respectively. However, if n is not
too large, f, and £, are close. In the second case of eqn
(25), the characteristic frequency of the transducer is
reduced by half from that given by eqn (26).

Equations (23), (24) and (25) demanstrate that the
bandwidth can be increased by matching the character-
istic impedances of both backing and front materials
to that of the transducer (increases n). In medical im-
aging, the impedance of the transducer (such as lead
zirconate-titanate (PZT)) is very different from that of
biological soft tissues. In this case, the bandwidth can
be increased directly by matching the impedance of
the backing material to that of the transducer. How-
ever, this increases the loss of energy from the trans-
ducer into the backing material. Thus, in general, the
increase of bandwidth will be at the expense of the
transducer sensitivity or energy efficiency.

On the other hand, the useful energy of the trans-
ducer is the part that enters the biological soft tissues.
To couple more energy into the tissues and further
increase the bandwidth, one can add matching layers
between the transducer and the tissues. These layers
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will change the effective impedance of the tissues and
improve the impedance matching. Another way to in-
crease the bandwidth is to use multiple electrical exci-
tations (Krautkramer and Krautkramer 1975; Lu et al.
1990). This method stops the transducer ringing by
adding more electrical signals of proper amplitudes
and phases. A method for two- and three-dimensional
displays of acoustic pulses produced in water can be
used to study transducers of different bandwidths (Lu
et al. 1989). '

LIMITED DIFFRACTION BEAM FORMING

Limited diffraction beams are a special class of
solutions to the isotropic/homogeneous scalar wave
equation. These solutions represent waves that would
propagate to infinite distance without spreading, pro-
vided that they were produced with an infinite aperture
and energy. By limited diffraction we mean that travel-
ling with a wave in its propagation direction, one sees
ne changes in the wave pattern. Even if they are pro-
duced with a finite aperture and energy, the limited
diffraction beams have a large depth of field and an
approximate depth-independent property, i.e., they
have approximately unchanged beam shapes over a
large axial distance. In this section, we review some
of the limited diffraction beams and their potential
applications.

Background

Beams with a large depth of field were first devel-
oped by Brittingham in 1983 (Brittingham 1983). He
discovered electromagnetic waves that are localized
solutions to the free-space Maxwell’s equations and
would propagate to an infinite distance with only local
deformations. These waves were termed Focus Wave
Modes (FWM). Based on Brittingham’s work, two
years later, Ziolkowski (Ziolkowski 1985) developed
another wave that is also a localized solution to the
isotropic/homogeneous scalar wave equation. This lo-
calized wave is a special case of Brittingham’s FWM
(eqns (46) and (47)) and was used to construct other
localized waves such as modified-power-spectrum
(MPS) pulses (Ziolkowski et al. 1989). Independent of
Brittingham and Ziolkowski’s work, Durnin discov-
ered the first limited diffraction beams in 1987 in optics
and called them nondiffracting or diffraction-free
beams (Durnin 1987). To avoid the controversy of Dur-
nin’s terminologies, we have used the term *‘limited
diffraction beams’ (Lu and Greenleaf 1993b). Dur-
nin’s beams are also called Bessel beams because their
lateral profile is a Bessel function. The property of the
Bessel beams is that they would propagate to infinite
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distance without spreading provided that they were
produced with an infinite aperture. Even if produced
with a finite aperture, they are pencil-like and can focus
over a large depth of field (Durnin et al. 1987).

Durnin’s beams have been further studied in both
optics (Cai et al. 1988; Gori et al. 1987a, 1987b; Inde-
betow 1989; Kielczynski and Pajewski 1991; Uehara
and Kikuchi 1989; Vasara et al. 1989; Vicari 1989;
Zahid and Zubairy 1989) and acoustics (Campbell and
Soloway 1990). A narrow-band Bessel beam has been
produced with an ultrasound transducer of a finite aper-
ture using a nonuniform poling technique (Hsu et al,
1989). Broadband Bessel beams have been produced
in water with an annular array transducer and applied
to medical imaging (Lu and Greenleaf 1990b, 1991a,
1991¢, 19914, 1992f). Recently, a new class of nondis-
persive limited diffraction beams was discovered (Lu
and Greenleaf 1991b, 1992a, 1992b, 1993d). These
beams would not change their pulse shapes as they
propagate to an infinite distance provided that they
were produced with an infinite aperture and energy.
Produced with a finite aperture and energy, these
beams will have an approximately depth-independent
point spread function over a large depth of field (Lu
and Greenleaf 1992¢, 1993a; Fatermi and Arad 1991,
1992; Fatemi and Ahanessians 1991). The nonspread-
ing and nondispersive features of these beams may
simplify the restoration of images (Lu and Greenleaf
1992c, 1992e). In addition, steering limited diffraction
beams with a two-dimensional array transducer has
also been studied (Lu and Greenleaf 1992d).

Theory

We begin by deriving a family of exact solutions
to the scalar wave equation. In particular, the n-dimen-
sional scalar wave equation for source-free, loss-less
and isotropic/homogeneous media is given by (John
1982)

x?

J=1 =

G B
[2—%2552—%_0, 27

where x;, (j = 1, 2, . . ., n), represent rectangular coor-
dinates in an n-dimensional space, ¢ is time, n = 0, 1,
2, ..., cis a constant representing the speed of wave
and ® = P(x, x,, . . ., x,; 1) is an n-dimensional com-
plex wave field. In the physical world, only the real
or imaginary part of a complex wave is produced.
The wave eqn (27) has numerous solutions. One
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family of solutions is given by Lu and Greenleaf
(1992c¢):
(D(I[, X2s v - Xns t) = _ﬂs)s (28)

where f(s) is any well-behaved complex function of s,
and

n—1
s =Y Dix; + D(x, — cit), (29)

=1

n—1
¢ = *c /1 + ¥ DD, (30)
Jj=1

where D; are any complex coefficients, and » = 0 (oth-
erwise f(s) is only a function of time and represents a
vibration). If D; are properly chosen so that ¢, in eqn
(30) is real, f{s) represents a limited diffraction wave
propagating along axis, x,, at the phase velocity, ¢y, in
an n-dimensional space.

in which

Infinite aperture Bessel beams and X waves

Limited diffraction beams such as Durnin’s Bessel
beams and the newly discovered X waves can be ob-
tained from eqn (28) by properly choosing D; and in-
tegrating eqn (28) over selected free parameters associ-
ated with D; (n = 3) (Lu and Greenleaf 1992a):

(5, 1) = Jular)e ), 31
and
®Xm(?= t)

= g% f B ukr sin Qe Igk,  (32)
O

where ®; and ®y are the m™-order Bessel beams and
X waves, respectively, m = 0, 1, 2, ..., J, is the m-
order Bessel function of the first kind, e is the scaling
factor for the Bessel beams, 8 = VK* —a® > 0 (a
condition that the Bessel beams exist) is a propagation
constant, r = Y2 + ¥*is a radial distance, ¢ = tan™'(y/
%) is a polar angle, ¥ = (r, ¢, z) is a spatial point in
cylindrical coordinates, k ='wlc is a wave number,
B(k) represents any transmission or reception transfer
function of a transducer (or antenna), { is an Axicon
angle and a, is a constant that determines the decay
rate of the high frequency components of the X waves.

The Bessel beams and X waves given by eqns

(31) and (32) are limited diffraction solutions of the
wave equation. It implies that these beams have infinite
depth of field for any choices of the free parameters:
a, w, { and ao. This is different from conventional
beams. For example, the depth of field of a focused
beamn (F < «) is always finite, and the depth of field
of an unfocused (F = = in eqn (9)) Gaussian beam is
also finite unless the central wavelength is zero. For the
unfocused Gaussian beam, this is because its effective
aperture size, o, is finite. If ¢ = o, the unfocused
Gaussian beam is actually a plane wave, which is a
special case of the Bessel beam (with @ = O in eqn
(31)) or X wave (with { = 0 in eqn (32)) (the plane
wave is also a limited diffraction beam).

At any given axial distance, say z = 0, the phase
term in eqns (31) and (32) is e ™. This means
that each frequency component of the wave rotates at
a speed of w/m (for m0) on the surface of the radiator.
Therefore, they are also called waves of progressive
phase (Burckhardt et al. 1973a) or rotating waves (Lu
and Greenleaf 1993b). -

For pulse-echo imaging applications, broadband
beams are desirable. The broadband Bessel beams can
be obtained by weighting eqn (31) with a transmitting
transfer function, 7(w), and then linearly superposing
the result over the angular frequency, w (assume that
the transducer is excited with an electrical é-pulse)

D, (7, 1) = 2me™ ] (an)F ~ [T(w)e™],  (33)

where the subscript ‘‘BB’’ means broadband, & ~'
stands for the inverse Fourier transform that is defined
as (Bracewell 1965)

g = F ' {Gw)} = i f dwG(w)e ™', (34)

and where g(7) and G(w) are a Fourier transform pair.
Note that the broadband Bessel beams have also a
depth-independent lateral beam profile (a depth-inde-
pendent lateral resolution in imaging). However, the
pulse shapes of the broadband Bessel beams vary with
the axial distance, z, because the broadband Bessel
beams are dispersive, i.e., each frequency component
of the beam travels at a different phase velocity.

From eqn (32), we obtain the m"-order Broadband
X wave if B(k) = ap (Lu and Greenleaf 1992a)

. m _imd
o — ao(r sin £)"e ’ 35
'XBB,j, \/ﬁ_ff bk \/ﬂ)m ( )

where M = (r sin {)*> + 7% in which 7 = [ay —
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i(z cos § — cr)]. Because B(k) in eqn (32) is arbitrary,
it can be used to represent a transmitting transfer func-
tion of a practical transducer. Because the transfer
functions of practical transducers are usually band-
limited, the X waves produced by these transducers are
given by

1
Bypy, = — g [B(%)]*@XEB,,,) (36)

Qo

where the subscript ““BL”’ means band-limited and
" represents convolution in terms of time. Because
each frequency component travels at a constant speed,
¢, = cfeos £, the X waves in eqns (35) and (36) are
nondispersive.

The X waves given by eqn (32) or (36) include
some specific X waves studied recently. Although these
specific X waves have different field distributions
around their wave centers as compared to the broad-
band X waves given by eqn (35), they all possess a
similar asymptotic behavior in their sidelobes (X
branches). letting B(k) = —iway, we have the first
derivative of the X waves in eqn (35)

d ‘I)xsa,,,

= — icagr sin {y"e™?
ot ¢ ¢

L7+ (m + VWM + mM]

7
WM(r + My on
If m = 0 and multiplying eqn (37) by a constant,
—cos®/(icay), one obtains the X wave described by
Donnelly et al. (1994) by assuming ¥z, = @ and y =
cos { in their notations.
Another special X wave can be derived by letting
B(k) = —w’ag, which is a second derivative of eqn
(33)

azq)xssm
ar

= clay(r sin {)"e™

_ {M[(l ~2myr - (1 — mPWM]
(\/M)S(T + \/——M)nﬁl

3T (m 1)\/1\71]} 38)
Wby + byt ]

For m = 0, eqn (38) gives the X wave that is derived
by Zou et al. (1993) using the wavelet transform (divid-
ing by the constant —ctag).

Far ana_dimancinnal linear arrav annlicatinome nn-
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symmetrical limited diffraction beams that are also so-
lutions of the wave eqn (27) are desirable. Because
the order of derivatives is exchangeable, any partial-
derivatives of a solution of eqn (27) with respect to
the variable, x; or t, and their linear combinations are
still solutions. Unsymmetrical X waves can be con-
structed from eqn (35), for example

Fo IZR)

. {[(2“] — @)X + Qa4 — a)ysin'g
WMy

oy

- —(GI(HS)TZ}, (39)

where m = 0, and «, and a, are constants. If 2¢, — a,
> 0 and 2a; — a, > 0 simultaneously, the numerator
of eqn (39) in a transverse plane (x — y plane) repre-
sents elliptic contours with two axes proportional to
\/2a2 — a; and \/Za, — a,, respectively. The above
equation could also be used to simplify the electronic
steering of limited diffraction beams with a two-dimen-
sional array (Lu and Greenleaf 1992d).

Finite aperture Bessel beams and X waves

In practical applications of limited diffraction
beams, the apertures of transducers used to produce
the beams are finite. In this case, limited diffraction
beams such as the Bessel beams and X waves have a
finite depth of field and can be approximately produced
by truncating the infinite aperture beams given by eqns
(33) and (35) at the transducer surfaces (z = 0). Broad-
band pulses for z > 0 can be obtained by first calculat-
ing the fields for all frequencies with eqn (1), with the
aperture weighting function, &(7,, w), abtained from
the temporal Fourier transform of eqn (33) or (35), and
then doing the inverse Fourier transform of the results
with eqn (34).

If an aperture is circular and its radius is a, the
depth of field of the Bessel beams and X waves pro-
duced by the aperture is given by (Durnin 1987; Lu
and Greenleaf 1992a)

BZ... = ay(kio)? — 1, (40)
and
XZ = a cot §, (41)

resnectivelv. The denth of field here is defined as the
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Fig. 7. Sidelobes and depth of field of a zero™-order X wave (full lines), J, Bessel beam (dotted lines) and

dynamically focused (F = Z) Gaussian beam (dashed lines) produced with an aperture of diameter of 50 mm at

4 central wavelength of 0.6 mm (2.5 MHz central frequency). Real part of complex beams are plotted. The lateral

plots of the beams are given at three depths: (1) 50, (2) 100 and (3) 216 mm. The peaks of pulses are plotted as
the beams propagate from 6 to 400 mm (4).

distance in which the field maximum drops to about
one half of that at the surface of the transducer. For
both the Bessel beams and X waves, the depth of field
increases linearly with the size of aperture.

Examples of a J, Bessel beam and a zero™-order
X wave (m = 0) calculated from eqn (1) are shown in
Fig. 7 (with exact aperture weightings). The lateral
plots of the beams show the sidelobes where the max-
ima of the field along lines parallel to the wave axis
are plotted vs. the lateral distance. For the Bessel beam,
the scaling factor, @ = 1202.45 m™', and the transmit-
ting transfer function, 7(w), is the Blackman window

function (Oppenheim and Schafer 1975) that is peaked
at the central frequency f; = 2.5 MHz with a relative
bandwidth of about 81% (—6 dB bandwidth divided
by the central frequency). For the X wave, ao = 0.1
mm, { = 6.6° and the transmitting transfer function,
B(k), is the same as T(w). The radius of the aperture,
a, is 25 mm and the speed of sound, ¢, is 1500 m/s.
The depth of field calculated from eqns (40) and (41)
for the Bessel beam and X wave are about 216.3 mm
and 216.1 mm, respectively. For comparison, a dynam-
ically focused Gaussian beam is also shown. The
FWHM of the Gaussian beam at the transducer surface
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CW Bessel Beam Development
(Transducer: D = 50 mm, f, = 2.5 MHz)

Transducer

a9/83/JvL

Fig. 8. Development of a CW J; Bessel beam (sagittal cross-section) measured in water as more of the aperture

(indicated with white bars on the left hand side of each panel) of an annular array transducer is excited. The array

has 10 elements and a diameter of 50 mm. It is weighted with a stepwise Bessel function. The frequency of the

beam is 2.5 MHz and the scaling parameter, «, is 1202.45 m~'. The depth of the beam is about 216.28 mm.

Panels (1) to (10) correspond to one to ten elements excited, respectively. Modified with permission from Fig. 2
of Lu and Greenleaf 1993d.

is 25 mm (or ¢ = 15.014 mm). The focal length of
the beam is equal to the observation distance, i.e., F =
z. The transmitting transfer function of the transducer is
the same as that for the Bessel beam.

The weighting function, &, w), in eqn (1) can
be approximated with stepwise functions such as one
determined by a 10-element annular array transducer
(Lu and Greenleaf 1991a, 1992b). The use of an annu-
lar array transducer to produce limited diffraction
beams will simplify the construction of the transducer
and allow the currently available annular array technol-
ogy to be used. Moreover, it is convenient to use the
same annular array transducer to produce either a lim-
ited diffraction beam or a conventional beam, or to
perform dynamically focused reception in pulse-echo
imaging to suppress the high sidelobes of limited dif-
fraction beams in transmission (Lu et al. 1993). Figures
8, 9 and 10 show the CW J, Bessel beam, J, Bessel
pulse and zero™-order X waves and how they develop
in water as more active rings of the 10-element annular
array transducer are excited (Lu and Greenleaf 1993d).

Trade-off between lateral resolution and depth of field

With a finite aperture, there is a trade-off between
the depth of field and the FWHM (lateral resolution
of images) of limited diffraction beams. The FWHM
of the broadband Bessel beams and X waves can be
obtained from eqns (33) and (35) with m = O (the
beams have a central maximum), respectively (Lu and
Greenleaf 1992a)

B
FWHM, ~ = (42)
o
and
23
FWHM, ~ 2% (43)
Sin

where the subscripts ‘B’ and ‘X"’ represent the Bes-
sel beams and X waves. The FWHM is calculated in
the transverse planes through the pulse centers. To
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Pulsed Bessel Beam Development at Z/D = 2.0
(D = 50 mm, f, = 2.5 MHz)

%
L]

:
I

-

'I\\
Transducer

(10)
09/93/J¥L

Fig. 9. Development of a J, Bessel pulse (sagittal cross-section) measured in water at Z/D = 2.0 (where Z and

D are axial distance and transducer diameter, respectively) as more of the aperture (indicated with white bars on

the left hand side of each panel) of an annular array transducer is excited. The same transducer array in Fig. 8 is

used and its weighting is also the same, but the transducer is driven with a one-and-a-half cycle pulse. Modified
with permission from Fig. 3 of Lu and Greenleaf 1993d.

increase the lateral resolution, the free parameters «
and { in eqns (42) and (43) must also be increased.
This is in conflict with the depth of field given by eqns
(40) and (41).

On the other hand, the depth of field and the
FWHM are related directly or indirectly to the central
frequency (central wavelength) of the beams. Although
a higher central frequency does not increase directly
the lateral resolution of the Bessel beams (eqn (42)),
it increases the depth of field (eqn (40)). To keep the
same depth of field (eqn (40)), o should be increased.
This increases the lateral resolution (eqn (42)). Simi-
larly, a smaller a, in eqn (43) increases the high fre-
quency components of X waves (eqn (32)) and in-
creases the lateral resolution directly while keeping the
same depth of field (eqn (41)). The trade-off between
the depth of field and the lateral resolution of limited
diffraction beams, and its dependence on the central
frequency (or wavelength), are similar to those of con-
ventional beams (eqns (15) and (16)).

A method to increase both the lateral resolution

and the depth of field of X waves has been developed
recently (Song et al. 1993). In the method, the Axicon
angle, {, is modified as a function of radial distance,
Liry =8y — Q,m > 0, at the surface of a transducer,
where {, and {, are constants. This increases the lateral
resolution of the X waves at distances closer to the
transducer, while keeping a larger depth of field (eqns
(41) and (43)) because the Axicon angle decreases as
the radial distance increases (Lu and Greenleaf 1992a).
However, the modified X waves are no longer limited
diffraction solutions to the wave eqn (27) even if they
were produced with an infinite aperture.

Sidelobe reduction

The sidelobes of the Bessel beams and X waves
are at about the same level as those of a Bessel function
(eqns. (31), (32) and (33)) and thus are very high. High
sidelobes reduce contrast in imaging, making early de-
tection of small cysts and tumors difficult. In addition,
high sidelobes lower the accuracy in tissue character-
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X Wave Beam Development ot Z/D = 3.4
(D = 50 mm, f, = 2.5 MHz)

7

Transducer

(10)
09/93/0YL

Fig. 10. The same format as that in Fig. 8, except that a zero"-order X wave measured in water at Z/D = 3.4 is

displayed. The X wave has the following parameters: a, = 0.05 mm, £ = 4.0° and a depth of field of 357.51 mm.

The transducer is the same as that used in Fig. 9 but weighted with eqn (35) with both z and » = 0. Modified
with permission from Fig. 6 of Lu and Greenleaf 1993d.

ization (identification) and increase background noise
in nondestructive evaluation of materials.

Summation-subtraction method. A method to re-
duce the sidelobes of limited diffraction pulse-echo
imaging systems in which limited diffraction beams
are used in both transmission and reception has re-
cently been developed (Lu and Greenleaf 1993b). To
implement the method, nonrotating limited diffraction
beams are developed as follows

®; (7, £) = Ju(ar)cos m(d — ¢o)e' @™, (44)
and
Dy (7, 1) = cos m(¢p — ¢ho)

' .r B, (kr sin Qe or el (45)
4]

where ¢, is an initial rotation angle of the beams. Note
that eqns (44) and (45) are the same as eqns (31) and

(32), respectively, except that ™ is replaced with

cos m(¢ — ¢y). The prime is used to distinguish eqns
(44) and (45) from eqns (31) and (32), respectively.

Sidelobes of the pulse-echo imaging systems us-
ing the limited diffraction beams in eqns (44) and (45)
can be reduced by summing echoes produced from the
second-order beams that are rotated around the beam
axis by m/4 with each other, and then subtracting the
result from the echoes obtained with the zero™-order
beams. The reason that the sidelobes can be reduced
is because cos’m¢ + cos’m(¢p — 7w/(2m)) = 1 for any
m, and J3(-) and J3(-) approach to the same function
as their arguments increase. The square operation for
both the cosine and Bessel function comes from the
pulse-echo process. It is the square operation that can-
cels the azimuthal-angular dependence of the higher-
order limited diffraction beams. A 25 mm diameter,
3.5 MHz central frequency and 14-element annular
array transducer of 16 sectors has been suggested to
implement the summation-subtraction sidelobe reduc-
tion (Lu and Greenleaf 1993c).

The sidelobe reduction method above requires
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three A-lines that need three transmissions at one trans-
ducer position. This reduces frame rate to 3 in im-
aging. More higher-order limited diffraction beams can
be used to further reduce the sidelobes (Wild 1965).
But this lowers further the imaging frame rate. The
trade-off between sidelobes and imaging frame rate for
limited diffraction beams is similar to that between
depth of field and frame rate for conventional focused
beams. Conventional beams have low sidelobes at their
focuses. Their depth of field is usually increased with
a montage process that lowers the imaging frame rate,
but low frame rate produces artifacts for images of fast
moving objects such as the heart.

Although the depth of field of conventional beams
is increased after a montage process, they are still dif-
fracting within their depth of field. This is seen from
eqn (16) where the FWHM of a Gaussian beam at
focus is a linear function of its focal length. In contrast,
both the zero"- and higher-order limited diffraction
beams are nearly nonspreading within their depth of
field. Consequently, after sidelobe reduction, they are
still nonspreading. This may simplify image restora-
tions such as deconvolution for limited diffraction im-
aging systems because the point spread functions of
the systems are approximately depth-independent or
shift-invariant. In addition, the FWHM of limited dif-
fraction beams will not change with the speed of sound
of materials imaged, although their depth of field may
be reduced at a higher speed of sound (larger central
wavelength). This is convenient in nondestructive eval-
uation of materials where the speed of sound of materi-
als could vary significantly from one application to
another (Lu and Greenleaf 1993a).

Deconvolution. Because the point spread func-
tions of limited diffraction pulse-echo imaging systems
are approximately depth-independent, image restora-
tion techniques such as deconvolution are readily ap-
plied to reduce the sidelobes. An example was given
to restore an image obtained with a J, Bessel beam
using a Wiener filtering technique. The result showed
that with only one filtering kernel, the sidelobes were
reduced around 10 dB over the entire depth of interest,
in addition to an enhancement of both lateral and axial
resolutions (Lu and Greenleaf 1992¢, 1992e).

Limited diffraction transmission and dynamically
focused reception. A pulse-echo imaging system may
take the advantages of both limited diffraction beams
and conventional beams if limited diffraction beams
are used in transmission and conventional beams in
dynamically focused reception. Such “*hybrid™ sys-
tems may produce high frame rate, large depth of field
and low sidelobe images (Lu et al. 1993) because the

high sidelobes of limited diffraction beams are sup-
pressed by the low sidelobe dynamically focused re-
ception. In addition, if dynamic focused reception with
a constant f~number is used (eqn (8)), such *‘hybrid™
imaging system can be expected to have an approxi-
mate depth-independent point spread function and thus
various image restoration techniques can be readily
used to improve image quality.

Localized waves. Localized waves were first dis-
covered by Brittingham and were termed Focus Wave
Modes (FWM) (Brittingham 1983). These waves con-
tain phase terms that represent waves propagating at
two different speeds. The FWM discovered by Brit-
tingham are the linear combinations of the terms of
the form

rwmp(Fs 1) &
_ bt ea
e [zo+ilz—cn)] e+

) ) sin
e"‘l(zme"‘z(z_f"){ ¢} ., (46)

[zo + iz — ct)]™ cos me

where z, is a real constant, m, m; and m, are integers
that are interrelated, ¢ > ¢, > 0, k; is a positive real
constant and k, = 2ck/(¢ + ¢,). Equation (46) includes
another FWM that was derived two years later by Ziol-
kowski (1985) using a complex source location ap-
proach. Letting m, m; = 0, m, = 1 and ¢, = 0, and
multiplying the constant 1/(47i) in eqn (46), we have
(Ziolkowski 1985)

kyr?

€ latitz—cn

B, (7, 1) = 0. (47)

dri[zo + iz — cb)]

A linear summation over the free parameter, k;, pro-
duces the so-called modified-power-spectrum (MPS)
pulse that has a finite total energy (Ziolkowski et al.
1989)

Dyps(F, 1) =
’2 %
eib‘<m "I(Z+q))/bl
Rt’ 5 , (48)
[z0 + iz — cB)]
. ('2/[10 + iz + el — iz + ct) i ba)b4
; b,

where “‘R,’” represents the real part; by, b», by and by

are constants. Because there are terms z — ¢t and z —
cit, or z — ctand z + ct in eqns (46), (47) and (48), the
waves represented by these equations are not limited
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Fig. 11. Sidelobes and peaks of pulses of the special class of solutions of the scalar wave equation for zero™-
order X wave (Full lines), zero™-order second-derivative X wave (very long dashed lines), subsonic (subluminal)
wave (long dashed lines), modified-power-spectrum (MPS) pulse (dashed lines) and focus wave mode pulse
(FWM) (dotted lines). The sidelobes are plotted at three depths: (1) 50, (2) 100 and (3) 216 mm. The peaks of
pulses along the propagation axis are plotted (Panel 4) to show the fluctuations of the beams and their infinite
depth of field when they are produced with an infinite aperture, except MPS whose depth of field is finite because
it has a finite total energy (the amplitude of its peaks has already dropped slightly within the relatively small
propagation depth of 400 mm).

diffraction beams. The real and imaginary part of these
waves are functions of the axial distance, z, even if
one travels with the waves (z = ct). However, these
waves can be localized around the wave center by
properly choosing their free parameters.

The sidelobes of localized waves are lower than
those of X waves. A lateral plot of eqns (47) and (48)
is shown in Fig. 11 (compared with the X wave (eqn
(35)) and second-derivative X wave (eqn (38)) of m =

0). The maxima of the beams along lines parallel to
the wave axis are plotted versus the radial distance to
show the sidelobes. However, when the localized
waves in Fig. 11 are produced by a band-pass linear
transducer system whose transmitting transfer function
is a Blackman window function similar to that of phys-
ical ultrasound transducers in medical imaging, their
sidelobes are about the same as those of the X waves
(Fig. 12). In other words, if the transducer system had
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Fig. 12. Beams produced with a finite aperture and band-limited transducer. They correspond to the beams in
Fig. 11. The figure has the same format as Fig. 7.

a flat frequency response (infinite bandwidth), the side-
lobes of the localized waves would be lower. This
means that the localized waves contain more high fre-
quency components than the X waves. The fourth panel
of Fig. 11 shows the fluctuations of the pulse peaks
(on or around the pulse centers) of the localized waves
as they propagate. The fluctuations are reduced as the
waves are band-pass filtered (Panel 4 of Fig. 12). The
radius of the aperture for producing the beams in Fig.
12 is the same as that for those in Fig. 7 (25 mm).
The FWHM of the beams in Fig. 11 is adjusted
to about the same as that of the X waves with the
parameters of the beams chosen as follows: for the X
wave, a, = 0.1 mm, { = 6.6°; for the second-derivative

X wave, ap = 0.35 mm, { = 6.6° for the FWM in eqn
A7), 7o = 6.0 X 107° m, k; = 20.0 m™'; and for the
MPS in eqn (48), 2o = 6.0 X 107° m, b, = 60.0 m™",
b, = 2.5, by = 1.0 m, by = 1.0. The speed of sound,
¢, 1s assumed to be 1500 m/s.

After filtering with the Blackman window func-
tion (the same as that for Fig. 7), the FWHM of the
localized waves is slightly increased from that of the
X waves, and thus the —6 dB depth of field of beams
is also increased (Panel 4 in Fig. 12). In addition, the
second-derivative X wave is almost the same as the X
wave after the filtering (their curves almost overlap in
Fig. 12). The other parameters of the beams in Fig. 12
are the same as those in Fig. 11.
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Subsonic (subluminal) waves. X waves and Bessel
beams are also supersonic (superluminal (Donnelly
and Ziolkowski 1993)) waves because their phase ve-
locities are greater than the speed of sound or light, ¢
(egns (31) and (35)). Subsonic (subluminal (Donnelly
and Ziolkowski 1993)) waves are waves whose peak
propagates slower than ¢. A subsonic (subluminal)
wave was derived recently with a method that solves
the isotropic/homogeneous scalar wave equation in a
temporal-spatial Fourier transform domain (Donnelly
and Ziolkowski 1992, 1993)

Dgp(F, 1)

&
sm[ Sl

(c cos {)f)* + (r sin C)Z}

(c cos )t)* + (r sin )*

Ecosl o
-é sin%¢ (L cos qr) s (49)

where the subscript ‘‘Sub’’ means subsonic or sublu-
minal, and £ and { are constants. We have obtained
the spectrum of ®g,,(7, ) by looking up an integration
table (Gradshteyn and Ryzhik 1980)

. o sin®C 1
@ ul 4, w —_— u7€ cost.
sun(F, W) = £c cos C ( ) 05,
5 cos Q W £
. J t ——— ]. (50
o r e C\/ smz(: ¢ sin’( (50)
where 0 < . ,52 o £ (_:025 C. The subsonic
c sin’{ sin“{

wave in eqn (49) is also a localized wave. The peak
of the real or imaginary part of the subsonic wave is
also fluctuating as it propagates because a phase term
of eqn (49) travels at a supersonic speed, c/cos {. A
lateral plot of eqn (49) is also shown in Fig. 11. The
subsonic localized wave is emphasized because its fre-
quency components are in a finite range.

The field of the subsonic wave vs. the radial dis-
tance is a sinc function (eqn (49)). Thus, the sidelobes
of the subsonic wave are lower than those of the Bessel
beams (eqn (31)) or X waves (eqn (32)) whose depen-
dence of fields on the radial distance is similar to that
of a Bessel function (Fig. 11). The subsonic wave given
by eqn (49) has a broad bandwidth. Its lowest and
highest frequency components are given by f; = (1 —
cos 0)fy and f, = (1 + cos 0)f,, respectively, where fo
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= £c/(27 sin®C) is the center frequency. This means
that if a transducer system has a flat frequency response
over the above frequency range, the subsonic wave
with lower sidelobes can be produced. With a finite
aperture, the depth of field of the subsonic wave may
be finite, but a broadband subsonic wave will retain
its low sidelobes over a large depth of field (this can
be verified by a simulation with eqn (1)).

If the transmitting transfer function of the trans-
ducer is a Blackman window function peaked at f;,
the sidelobes of the subsonic wave are increased
greatly (Fig. 12) and are at about the level of the X
waves. This is because the transducer system elimi-
nates the high-frequency components of the wave.
The high-frequency components decrease diffractive
spreading, thus increasing depth of field and also low-
ering the sidelobes with the same depth of field.

The parameters for the subsonic waves in Figs.
11 and 12 are as follows: { = 6.6° and £ = 138.34
m~'. With the above parameters, the central frequency
of the Blackman window function is about 2.5 MHz
(the same as that for Fig. 7), and the lowest and highest
frequencies of eqn (49) are 0.017 and 4.98 MHz, re-
spectively. The relative bandwidth of the broadband
subsonic wave is given by 2 cos { = 199%. In practice,
a transducer system that has such a huge relative band-
width while still having high sensitivity would be dif-
ficult to obtain. The aperture radius for the simulation
of the subsonic wave in Fig. 12 is the same as that for
other beams (25 mm).

Possible applications

Because limited diffraction beams have very large
depth of field and are approximately depth-indepen-
dent even if they are produced with a finite aperture,
they could have practical applications in enhancing the
lateral resolution while keeping a high frame rate in
medical imaging (Lu and Greenleaf 1990b), eliminat-
ing diffraction correction in tissue characterization (Lu
and Greenleaf 1990a), having material-independent
and depth-independent lateral resolution and simpli-
fying image processing in nondestructive evaluation of
materials (Lu and Greenleaf 1993a), Doppler imaging
(Evans et al. 1989; Hein and O’Brien 1993; Magnin
1987), as well as other wave related areas such as
energy transmission in electromagnetics (Brittingham
1983; Ziolkowski 1989) and laser energy transfer and
optical alignment in optics (Ojeda-Castaneda and
Noyola-Iglesias 1990). However, the sidelobes of lim-
ited diffraction beams are high and must be accounted
for in imaging applications. As is seen from the last
subsection, the reduction of sidelobes is usually at the
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expense of imaging frame rate or the bandwidth of a
transducer system.

BEAM STEERING

To form an image, sweeping a beamn over a cross-
section of an object is necessary. In medical imaging,
two methods are used to sweep beams: mechanical
and electronic. For each method, two scan formats are
usually used: linear and sector.

Mechanical scan

In a mechanical scan, a beam is swept by moving
or wobbling the transducer with a stepping motor to
perform a linear or sector scan (Foster et al. 1989a,
1989b). The linear scan usually requires a larger acous-
tic window, while the sector scan uses a smaller one.
Therefore, the sector scan is particularly useful in car-
diac imaging where the window sizes are limited by
surrounding bones. The mechanical scan does not need
complex electronic circuitry. It maintains the same
beam quality (sidelobes and beamwidth, etc.) over all
transducer positions or angles if the refraction of beams
on the interface between coupling fluid and the objects
imaged is negligible (Foster et al. 1989a). However,
the mechanical scan has the following limitations: (1)
the frame rate is limited by the inertia of the transducer
and the motor system; (2) it is difficult to maintain a
constant speed in transducer wobbling; (3) the trans-
ducer may vibrate when it is operated; (4) the system
is subject to mechanical wear and (5) the transducer
is difficult to start and stop abruptly to shoot a beam
several times in each transducer position, as is desired
in conventional real-time color Doppler imaging (Ev-
ans et al. 1989; Magnin 1987).

Electronic scan

An electronic scan is usually produced with array
transducers. There are two types of array transducers:
one- and two-dimensional array transducers (Kino
1987). A one-dimensional array has its elements ar-
ranged in a line, while a two-dimensional array consists
of elements that are arranged in a plane. In a linear
scan, the elements of an array transducer are excited
or multiplexed one by one or group by group sequen-
tially in one direction to sweep a beam. In the sector
scan, a beam is steered by signals that are applied to
the elements of an array with delays that are a linear
function of the element positions in the scan direction.
An electronic sector scan with an array transducer may
distort the beams, lowering the lateral resolution or
destroying some beams, such as the limited diffraction
beams (Lu and Greenleaf 1992d). This is because the

effective size of the aperture of the transducer is re-
duced as the beam is steered off the normal axis of
the transducer. In addition, the sidelobes and grating
lobes of the beams may be increased in the sector scan
because the element sizes are not small enough and
the number of elements is not large enough.

One-dimensional array. One-dimensional arrays
are widely used in modern commercial ultrasound
scanners for medical diagnosis because they have a
relatively few number of elements (von Ramm and
Smith 1983). Beams can be focused dynamically by a
one-dimensional array in a lateral plane or scan plane
(determined by the line of array elements and the axial
axis of the array). In the plane that is perpendicular to
the scan plane (elevation plane), the beams can only
be focused with an acoustic lens that has a fixed focal
length. Therefore, the slice thickness of an image ob-
tained by a one-dimensional array will be large and
depth dependent. In addition, one-dimensional arrays
cannot scan electronically in the elevation plane.

Two-dimensional array. Two-dimensional arrays
contain a large number of elements (from a few hun-
dreds to a few thousands) in order to reduce grating
lobes. They are difficult to construct because their di-
mensions are usually of the order of a few centimeters
(in medical imaging). Most current studies of two-
dimensional arrays are theoretical and computer simu-
lations (Turnbull and Foster 1991, 1992a), although
some prototypes of two-dimensional arrays have been
constructed (Turnbull and Foster 1992b; Smith et al.
1991). Nevertheless, two-dimensional arrays are prom-
ising for volumetric (three-dimensional) imaging,
phase-aberration correction, slice thickness reduction,
and steering of limited diffraction beams (Smith et al.
1991; Nock and Trahey 1992; Lu and Greenleaf
1992d). Practical applications of two-dimensional
arrays rely on successfully solving problems such as
wiring of elements, electronic and mechanical cross-
talk among elements, high impedance of each element
and complex multiplexing among elements.

Some techniques have been suggested to reduce
the number of the elements of two-dimensional arrays.
Sparse arrays, for example, reduce the number of ele-
ments by randomly removing elements from periodic
dense arrays. However, array performance suffers be-
cause of increased sidelobes and loss of gain (Turnbull
and Foster 1991). Another way to form a sparce array
is to place randomly a fewer number of elements within
the array aperture (random position array). This in-
creases the randomness of the array and is expected
to reduce the grating lobes, but such arrays may be
difficult to construct. In addition, the distance between
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some of the elements may be small, which limits the
size of these elements and further increases their im-
pedance. To avoid the small interelement distances,
one may limit the distance between the centers of any
two elements to be greater than a given value. But, as
the minimum interelement distance increases, there
will be more restrictions on element positioning and
thus a reduction in the array randomness.

Electronic sector steering of limited diffraction
beams with a two-dimensional array requires that the
aperture area loss due to the beam steering should be
compensated, so that the cross sections of the beams
are always the same (Lu and Greenleaf 1992d). To
compensate the aperture, complicated multiplexing of
elements is required because the area changes each
time a beam is directed to a new direction and there
are typically over 100 directions in a scan. A method
to reduce to 4 the number of the multiplexing channels
in a scan has been suggested (Lu and Greenleaf 1992d).
The method divides the scan angle into four ranges,
each of which is selected so that the cross section of
the beam is approximately the same as that before the
steering. A way to avoid the multiplexing of the array
elements might be the use of the unsymmetrical limited
diffraction beams in eqn (39). One might change the
drive functions four times for a rotary symmetric two-
dimensional array with different unsymmetrical lim-
ited diffraction beams as the beams are steered in the
four angle ranges. In this way, the beams would not
be destroyed even though the areas of the cross-sec-
tions of the beams are reduced and the beams become
unsymmetrical. In addition to the beam distortions
caused by the area change in a scan, sizes of elements
may also cause beam distortions. The grating lobes
and FWHM of beams may increase significantly with
the size of elements in the scan direction (Lu and
Greenleaf 1994).

DISCUSSION

Conventional and limited diffraction beams are
usually studied under simplified conditions, e.g., the
beams propagate in isotropic-homogeneous and loss-
free media without boundaries. In addition we assume
that the apertures for limited diffraction beams and
Gaussian beams are infinite. These conditions are not
satisfied in practice. The following will discuss the in-
fluences of some practical conditions on beam forming.

Finite aperture influences

Fluctuation of beams. Limited diffraction beams
and Gaussian beams can only be produced with a finite
aperture in practice. Therefore, these beams must be
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truncated with a finite aperture. The truncated beams
will be different from the original infinite aperture
beams. The depth of field will be reduced and the peak
of the beams might fluctuate as they propagate (Durnin
et al. 1987). The amplitude of the fluctuation depends
on the bandwidth of the beams as well as the ratio of
the amplitude of the beams at the truncated edge to
the amplitude of the peak of the beams on the aperture.
Large fluctuations can cause error in estimation of tis-
sue attenuation if they are not well compensated.

Depth-dependent sidelobes. The resulting side-
lobes of limited diffraction beams truncated with a
finite aperture will be depth-dependent. The depth-
dependent sidelobes may produce noise in the restora-
tion of images if the point spread function of the im-
aging system is assumed to be depth-independent.
However, as the size of the aperture increases, the
sidelobes will be less depth-dependent.

Edge waves. Edge waves are produced by the
abrupt truncation of the fields of beams on an aperture.
The edge waves appear ahead of or behind the main
pulses. Their positions and amplitudes are depth-de-
pendent. Because of the depth-dependency, edge
waves might also produce noise in an image restoration
if they are assumed to be depth-independent. More-
over, the edge waves may produce ‘‘ghost’’ structures
in imaging. To reduce the edge waves, aperture apodi-
zations can be used (Lu and Greenleaf 1992a). How-
ever, this shortens the depth of field because the effec-
tive size of the aperture is reduced. For conventional
spherically focused beams, there are no edge waves at
the foci because beams from all points on the aperture
arrive in phase at the foci. However, the edge waves
are present everywhere other than at the foci (Kino
1987; Lu and Greenleaf 1993b).

Other influences

Phase aberration. Phase aberration is a major
source of beamn distortions. Some biological soft tis-
sues such as the female breasts have strong phase aber-
ration (Foster and Hunt 1979; Trahey et al. 1991).
Phase aberration increases with the size of the trans-
ducer aperture, central frequency, relative variation of
speed of sound (vs. the background) and propagation
distance of beams. Various methods for the correction
of the phase aberration with array transducers have
been proposed (Nock and Trahey 1992; Trahey and
Nock 1992; Zhao and Trahey 1991; Fink 1992). How-
ever, these methods are compromised by reverberation
and nonuniform image brightness. Moving target-
based phase aberration correction techniques (Zhao et
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A is the central wavelength; k = 2n/A is the wave number; r, is the radial distance on transducer surface; a is the radius of the transducer;
z is the axial distance; o is the effective aperture size of a Gaussian beam; F is the focal length; a is the scaling factor of a Bessel beam; {
is an Axicon angle; and qy is the coefficient that determines the fall off rate of the high frequency components of an X wave.

al. 1992) may reduce the influence of the reverberation
and nonuniform image brightness, but suffer poor sig-
nal-to-noise ratio.

Attenuation. Attenuation of beams in biological
soft tissues is frequency dependent and is a function
of spatial position. The higher frequency components
of a beam have higher attenuation (Wells 1977). This
reduces the depth of field (eqn (40)) or resolution (eqn
(43)) of limited diffraction beams. Moreover, as more
high frequency components are absorbed when the
beams propagate deeper into tissues, the beamwidth of

the beams may increase with depth (for the Bessel
beams, the depth of field, rather than the lateral beam-
width, is dependent of the frequency components (eqn
(33)). Spatially dependent attenuation may distort the
beams by changing both the phase and amplitude of
each plane wave component of the beam.

Anisotropy. An anisotropic medium has a differ-
ent property for beams propagating in a different direc-
tion. According to the spatial Fourier transform (angu-
lar spectrum (Goodman 1968)), beams can be ex-
pressed as a superposition of plane waves that
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propagate in various directions. Therefore, if the media
are anisotropic, each plane-wave component of the
beams will be modified by different parameters and
the desired beams can hardly be constructed.

SUMMARY AND CONCLUSION

Summary

Some of the beams reviewed in this paper are
summarized in Table 1, which shows the relationship
between lateral beamwidth and depth of field, as well
as their relations to beam parameters.

Conclusion

There are an infinity of solutions to the wave equa-
tions that produce beams. Beam forming plays an im-
portant role in medical imaging and tissue characteriza-
tion. Beam forming is also applied to other wave-re-
lated areas such as nondestructive evaluation of
materials, electromagnetics and optics. Conventional
spherically focused beams suffer from a short depth
of field, but have low sidelobes at their foci. A dynamic
focusing technique can be used to increase the depth
of field while maintaining low sidelobes. However,
when this technique is applied to the transmission of
the conventional beams, imaging frame rate is reduced.
A special set of solutions to the wave equation, called
limited diffraction beams, have a large depth of field
and other features that are distinctive from those of
conventional beams. They are promising for and might
have an impact on beam forming. But these beams
have high sidelobes that may lower image contrast.
Reduction of the sidelobes of these beams also requires
lowering the imaging frame rate or necessitates a wider
frequency bandwidth.

Beam forming is governed by the scalar wave
equation (for infinite apertures) (eqn (27)) and the Ray-
leigh—Sommerfeld diffraction formula (for finite aper-
tures) (eqn (1)). These fundamental equations demon-
strate that beam forming can only be done in the near
field of a transducer. They govern the intrinsic trade-
offs among various imaging requirements, such as lat-
eral and axial resolutions, depth of field, sidelobes,
frame rate and system bandwidth. Moreover, beam
forming is usually based on the assumption that the
media in which beams propagate are isotropic, homo-
geneous and loss-free. This may not be true in practice,
and beam distortion or spreading must be expected.

Among the infinity of solutions to the wave equa-
tion exist many beams with special properties that can
be selected for specific applications. Certainly these
solutions have not been exhaustively searched as yet.
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