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INTRODUCTION
Limited Diffraction Beams

Limited diffraction beams are a class of non-spreading solutions to the
isotropic/homogeneous scalar wave equation. The first limited diffraction beam, called
Bessel beam, was discovered by Durnin in 1987.! Later, Lu and Greenleaf discovered
families of limited diffraction beams? that include all the limited diffraction beams known
previously, in addition to an infinity of new beams. One family of limited diffraction
beams has an X-like shape along the beam axis and was termed X wave. X waves are
different from the Bessel beam because they have multiple frequencies.’

With an infinite aperture and energy, limited diffraction beams would propagate to
infinite distance without spreading. Even if produced with a finite aperture and energy, they
have a very large depth of field. Because of this advantage, limited diffraction beams could
liave applications in medical imaging,*” tissue characterization,® nondestructive evaluation
of materials” and other wave related areas such as electromagnetics® and optics.” A recent
review of limited diffraction beams is given in Ref. 10.

Localized Waves

Although limited diffraction beams have a large depth of field, their sidelobes are
larger than conventional focused beams at their focuses. Sidelobes may lower the contrast
in'medical imaging and increase the sampling volume in tissue characterization.
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Localized waves were first discovered by Brittingham in 1983.!! They were further
developed by Ziolkowski et al}2!3 and Donnelly et al."13-1¢ Localized waves are also
non-spreading and can propagate with only local deformations in their waveforms. Under
ideal conditions, localized waves have lower sidelobes than limited diffraction beams. In
this paper, we will study the conditions under which localized waves, specifically, subsonic
(or subluminal) localized waves developed by Donnelly et al.,!> have lower sidelobes.

X WAVE AND SUBSONIC (SUBLUMINAL) LOCALIZED WAVE

Many limited diffraction beams and localized waves have been discovered.!? Sidelobes
of different limited diffraction beams are similar, they decay in the order of 1/./r, where
r = /2% + y? is a radial distance perpendicular to the beam axis. Sidelobes of localized
waves decay in the order of 1/r. Because sidelobes of localized waves are also similar
to each other, for simplicity, we study only the subsonic (or subluminal) localized wave'?
in the following. To study the difference between localized waves and limited diffraction
beams, we will use a limited diffraction beam (the zeroth-order X wavez) for comparison.

The zeroth-order X wave is given by”
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where ®yp 5, represents acoustic pressure or velocity potential (or scalar electric or
magnetic field strength in electromagnetics), g is a constant that determines the decay
speed of the high frequency components of the X wave, ( is an Axicon angle, i = /—1,
= is the propagation axis,  is time, and c is the speed of sound. It is seen from Eq. (1)
that if zcos( — ¢t = constant, ¢y gy, will be independent of » and 1, ie., the X wave
is propagation-invariant.

The subsonic wave obtained by Donnelly'® has the form of a sinc function
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where the subscript “Sub” means subsonic (or subluminal), £ and ¢ are constants. The
spectrum of ®4,4(7,¢) can be obtained from Eq. @10
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where (0 < F*Si[‘l‘ c‘ < m.

The propagation speed of the peak of the subsonic (or subluminal) wave in Eq. (2)
is slower than the speed of sound (or light). This is opposite to the X wave whose peak
propagates at a speed that is faster than the speed of sound (or light) (supersonic (or
superluminal), see Eq. (1))2 Tt is seen that the frequency spectrum of the subsonic wave
in Bg. (3) has limited bandwidth, The peak of the real or imaginary parts of the subsonic
wave fluctuates as the wave propagates, which is a common feature of all localized waves
(Eq. (2)).!° This is because the localized waves always contain two propagation terms:
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Figure 1. Theoretical X waves (top row) and subsonic (or subluminal) waves (boltom row) given by
Egs: (1) and (2) at the axial distance, z = (). The horizontal direction represents time, the distance (6.25
mm) is caleufated by assuming the speed of sound is 1500 m/s. The vertical direction is the radial
direction and the images shown in the figure are a cross section through the wave axis. The dimension
of each image is 6.25 mm x 25.0 mm. The columns from lefl to right correspond to real, imaginary,
ind modulus of the waves. Nole that the scale bar of the modulus images is different from that of the
real and imaginary images. The parameters for the X wave are ¢y = 0.05mm and { = 4.75", and

for (he subsonic wave are £ = 100.53mw ™" and = 4.75°,

— Subsonie
— XWavo
(HealPar)

Z=30mm Z= 150 mm

&4 «.—\P
g/'\nj at !
o 1 3
hzl
5 3 r— 8
] 10 5 0 5 10 10 5 o 5 10
T::. -
g =
< . Pulsa Poaks along: = =6 10 400 mm
E - i Z=52mm &
& =
W
E 7 (o) Em— — |
3 =
k WWVW
0 w2 J
s
w, |
o

<
D

=30
0

v ¥ y T r
-0 -5 o 5 0 2 100 200 300 400
Axinl Distanics, Z (mm}
Lateral Distance, ¢+ (mm)

Figure 2. Line plots of the maximum envelope of A-lines of the real part of the X wave (dotted
lines) and the subsonic wave (solid lines) shown in Fig. 1 at 3 axial distances: z = (1) 30, (2)

90, and (3) 150 mm, versus the radial distance. Peak of the waves versus the propagation distance
from 6 to 400 mm is shown in Panel (4). Tt is seen that the subsonic wave has lower sidelobes
and thie peak of the wave oscillates as it propagates. The waves are assumed to be produced with
an infinite aperture and energy.
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Spectrum of Subluminal Wave
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Figure 3. The modulus of the spectrum of the subsonic wave in Fig. 1 (see Eg. (3)) at the axial
distance, Uz = 0. The horizontal direction represents frequency and the vertical direction represents the
radial distance. With the parameters of the subsonic wave shown in Fig, 1, the frequency components
are limited between 0.012 MHz and 6.9 MHz with a central frequency of 3.5 Mz,

z — el and = — eot, where ¢ and ¢» are different constants. For the subsonic wave (Eq.

(2)), ¢ = ccos{ < ¢ (subsonic) in the amplitude term and ¢y = ¢/ cos ¢ > ¢ (supersonic)
in the phase term.

Finite Aperture X Wave

(D = 25 mm, g, = 005 mm, zato = 4.75")

f——86.25 mm—— p———6.25 mm—— k%s.zs mm——j

N N NG

Broodband (No Window)

EIERES

Z = 30 mm Z =30 mm Z = 150 tnm
Bund-Limitad (Blackrman Window. 15 = 3.5 MHz)

Sirmulation

Figure 4. X waves produced at 3 axial distances (z = 30 (left column), 90 (middle column), and [50 mm
(right column)) with a transducer of diameter of 25 mm. The images in the top row are produced with
a transducer of infinite bandwidth, while the images in the bottom row are produced with a transducer of
the Blackman window type of transfer function with a central frequency of 3.5 MHz and a —6-dB relative
bandwidth of about 81%. The dimension of the images and the parameters of the waves are the same as
those in Fig. 1.
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Je——5.25 mm—— je———6:25 mm——3§ f———6:25 mm——

KN KN

Broadband {No. Window)

BN KN RS

Z =30 mm Z =00 mm Z = 150 mm
Band—Limited (Blackmon Window, fo = 3.5 MHz)

Simulation

Pigure 5. The subsonic (or subluminal) waves produced at 3 axial distances (z = 30 (left column), 90
(middle column), and 150 mm (right column)) with a transducer of diameter of 25 mm. This figure has
flie same format as that of Fig. 4 and the parameters of the waves are the same as those in Fig, L,

RESULTS

A plot of Egs. (1) and (2) at = = 0 is shown in Fig. 1. The parameters of the X wave
and the subsonic wave are adjusted so that they have comparable mainlobe sizes. For the
X wave, ap = 0.05 mm and { = 4.75°. And for the subsonic wave, ( = 475% and £ =
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Figure 6. Line plots of the maximum envelope of A-lines of the real part of the X waves and the
subsonic waves produced with a finite aperture transducer (25 mm in diameter) in Figs. 4 and 3.
respectively, versus the radial distance. The plots are obtained at 3 axial distances: = = (1) 30, (2)

90, .and (3) 150 mm. Peak of the waves versus the propagation distance from 6 to 400 mm is shown
in'Pael (4). “BB" and “BL” represent broadband and band-limited waves, respectively. Solid and

dotted lines represent the broadband and the band-limited subsonic waves, respectively. Dashed and long
dashed lines represent the broadband and the band-limited X wave. respectively.
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100.53 m . A line plot that corresponds to the real part of the waves in Fig. 1 is shown
in Fig. 2. The difference of the sidelobes between the two waves is clearly seen. The
sidelobes are obtained by plotting the maximum of each A-line (lines that are parallel to
the wave axis (in horizontal direction of Fig. 1)) versus the radial distance of the beams.
The oscillations of the peaks of the subsonic wave as it propagates are also obvious. The
shape of the modulus of the subsonic wave in Fig. 1 is composed of concentric ellipses.
That is why the peak of the subsonic wave propagates slower than the speed of sound.

The modulus of the spectrum of the subsonic wave is shown in Fig. 3. It has clear
lower and upper cut off frequencies (see Eq. (3)). This is different from other localized
waves'? whose frequency components extend to infinity. The lower and upper cut off
frequencies of the subsonic wave are given by f; = (1 — cos{)fy and fj, = (1 + cos O) fa,
respectively, where fy = £¢/(2m sin® () is the central frequency. The spectrum in Fig. 3 is
obtained at = = 0 for various radial distances, » (in the vertical direction of the figure). The
lower and upper cut off frequencies can be calculated with the parameters of the subsonic
waves in Fig. 1: f; = 0.012 MHz and [, = 6.99 MHz (the central frequency is fy = 3.5
MHz). The relative bandwidth (( f), — f7)/fo = 2cos () of the spectrum is extremely large
(about 199%).

In practical applications, waves must be produced with transducers of finite apertures
and finite relative bandwidth. X waves (Fig. 4) produced by the transducer that has either
a finite aperture (diameter /) = 25 mm) or a finite aperture plus finite lower and upper cut
off frequencies have been simulated using the Rayleigh-Sommerfeld diffraction formula.'®
The envelope of the real part of the X waves is displayed in Fig. 4. For the broadband
X wave, a flat frequency response of the transducer is assumed. The lower and upper
cut off frequencies for the band-limited X waves are 0 and 7.0 MHz, respectively, which
correspond to the frequencies at zeroes of the Blackman window function.!” The Blackman
window has a central frequency of 3.5 MHz and its —6-dB relative bandwidth is about
81% of the central frequency. The simulated finite aperture subsonic wave is shown in
Fig. 5 in the same format as Fig. 4. The parameters for the X wave and the subsonic
wave are the same as those in Fig. 1.

Line plots of Figs. 4 and 5 are shown in Fig. 6 in the same format as Fig. 2. It is
seen that sidelobes of the subsonic wave increase as the bandwidth decreases. For the X
wave, sidelobes reduce with the bandwidth slightly.

Changes in the characteristics of the sidelobes of the subsonic wave with several
Blackman window functions are shown in Fig. 7. These Blackman windows are shown in
Fig. 8. It is noted that as the base bandwidth of the Blackman window function decreases
from 14 MHz to 7 MHz, the sidelobes are increased dramatically (the base bandwidth
is determined by the frequencies that correspond to the zeroes of a Blackman window
function).

CONCLUSION

Sidelobes of limited diffraction beams are higher than those of conventional focused
beams at their focuses. One way to reduce the sidelobes is to use localized waves that are
non-spreading and propagate with only local deformations. However, to take advantage of
the low sidelobes of localized waves, the transducers used to produce these waves must
have a large relative bandwidth (at least 162% —6-dB relative bandwidth in the above
example, see Fig. 7). Perhaps PVDF transducers, that have large bandwidth, could be used
to produced low sidelobe localized waves.
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produced with a finite aperture transducer (25 mm in diameter) versus the radial distance showing the

change of sidelobes with transducer bandwidth. The figure has the same formal as that of Fig. 6.
“Subsonic (BL)"” (solid lines) and “Subsonic (BB)” (long dashed lines) represent the subsonic waves

obtained with the transducer that has a transfer function of the Blackman window type centered at 3.5

MHz, and are repeated from Fig. 6 for comparison. These plots correspond (o the base bandwidths

(the bandwidth between the two zeroes of the Blackman window, see Fig. 8) of 7.0 MHz and infinity

respectively. Dotted and dashed lines represent the subsonic waves produced by the transducer of 14

MHz and 21 MHz base bandwidths, respectively (see Fig. 8).
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Figure 8. Examples of Blackman windows of different bandwidths: 7.0 MHz (dashed line),

14.0 MHz (dotted line), 21.0 MHz (solid line), and infinity (long dashed line). The two vertical
dashed lines represent the lower and higher cut off frequencies of the subsonic waves caiculated
by using the parameters in Fig. 1. The —6-dB bandwidth of the Blackman window is about 41%
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