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A New Approach to Obtain
Limited Diffraction Beams

Jian-yu Lu, Member, IEEE, Hehong Zou, and James F. Greenleaf, Fellow, IEEE

Abstract—Limited diffraction beams were first discovered by
Durnin in 1987 (formerly named nondiffracting or diffraction-
free beams by Durnin). Since then, new families of limited
diffraction beams have been discovered. Theoretically, limited
diffraction beams can propagate to infinite distance without
diffracting or spreading. Even if they are produced with a finite
aperture radiator, limited diffraction beams have a large depth
of field. Because of this property, limited diffraction beams could
have applications in medical imaging, tissue characterization, and
nondestructive evaluation, as well as other wave related areas
such as electromagnetics and optics. In this paper, we develop
a novel approach that can convert any diffracting solution of
the isotropic-homogeneous wave equation to a limited diffraction
solution. As an example, this approach was applied to an n-
dimensional wavelet solution that we generalized from the three-
dimensional solution obtained by Kaiser et al:et al:et al: This example
establishes a relationship between localized limited diffraction
beams and the wavelet theory. The resulting limited diffraction
beam was compared with those discovered previously.

I. INTRODUCTION

IN 1983, Brittingham discovered the first localized waves
that he termed “focus wave modes” [1]. The localized

waves can propagate to a large distance with only local
deformation. These waves were further developed and studied
by Ziolkowski [2] and many other investigators [3]–[11].
The first limited diffraction beam was found in 1987 by
Durnin [12], [13] (to avoid the controversy of Durnin’s origi-
nal terminologies “nondiffracting beams” and “diffraction-free
beams,” we used the term “limited diffraction beams” [14]).
Unlike localized waves, limited diffraction beams in theory
do not deform as they propagate to infinite distance while
maintaining a high localization. Recently, a new family of
limited diffraction beams (termed X-waves because of their
X-like shape in a plane along the wave axis) was discovered
[15], [16]. The new waves do not spread even for a large
bandwidth. When produced with a finite aperture radiator,
limited diffraction beams have a large depth of field (constant
high resolution over a large distance). Because of this property,
limited diffraction beams could have applications in medical
imaging [17]–[19], tissue characterization [20], nondestructive
evaluation [21], and Doppler blood flow estimation [22].
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In this paper we developed a novel approach that can
convert any diffracting solution of the isotropic-homogeneous
(or free-space) scalar wave equation to a limited diffraction
solution [15], [23]. As an example, this method was applied
to an -dimensional solution that we generalized from a 3-
D localized spherical wavelet solution developed by Kaiser et
al. [24]–[26]. This establishes the relationship between limited
diffraction beams and wavelet waves (wavelet theory). In
addition, the new limited diffraction beam obtained with this
method was compared to those discovered previously [14],
[15], [23].

II. THEORY

In this section, we will develop a novel approach that can
convert any diffracting solution of the isotropic-homogeneous
wave equation to a limited diffraction solution.

The -dimensional isotropic-homogeneous scalar wave
equation is given by

(1)

where denotes the acoustic pressure at
the -dimensional point and time ,
are spatial variables in rectangular coordinates, is the speed
of sound in the medium and is an integer.

To obtain a wave (or beam) that will propagate along one
of the spatial axes, say, , with time and does not spread
when propagating, we will seek a solution such that
appears as a single term like the equations derived in [15], [23],
where is a constant related to the speed of sound . With this
specific task in mind, we first consider the -dimensional
wave equation (let in (1))

(2)

where denotes the wave field in the -
dimensional space and at time .

It is easy to verify that if is a solution to (2), it
will be a limited diffraction solution to (1) after the following
variable substitution

and (3)
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where is a real constant. Using the substitution in
(3), from (2) we have

(4)

and

(5)

Summing both the left- and right-hand sides of (4) and (5),
and comparing the results with (1), we see that

(6)

is a solution to (1). In addition, because the variables, and
, appear in the form, , (6) represents a limited

diffraction beam. In other words, if constant
(travels with the wave at the speed, , along the axis,

), (6) is not a function of and (an unchanged wave
package).

Notice that the above conversion to a limited diffraction
beam is valid only when in (2). For

represents a vibration, not a wave. In this
case, can only be converted to a limited diffraction wave
when in (3). In addition, the “ ” sign in (3) can be
changed to “ ,” which represents a wave going along
direction.

III. APPLICATION TO WAVELET SOLUTION

The method developed in the last section can be applied to
an arbitrary solution of (1). However, we are particularly inter-
ested in those solutions which have some kind of localization.
The wavelet solution [24]–[26] developed with the wavelet
theory is localized and we will use it as an example to obtain
a localized limited diffraction beam.

We first generalize a 3-D spherical wavelet solution devel-
oped by Kaiser et al. [24]–[26] to an -dimensional space

(7)

where is a solution of (1) (see Appendix), is
an integer, is a constant, “ ” represents that
either the sign “ ” or “ ” is used in both the numerator and

denominator of (7), and . For and
, we obtain Kaiser’s solution [26]

(8)

where and .

Notice that solution (7) specifies an -dimensional localized
wave. It appears in space-time for only a short duration and
location and decays asymptotically in and directions in
the power of . However, the peak (at when

) of the wave decays asymptotically in the power of
for . The importance of this solution is

that the translates and dilates of (7) can be used as a basis to
reconstruct the wave field at any from any
source field [24]–[26].

From (7), we obtain the -dimensional wavelet so-
lution

(9)

where . Using the variable substitution (3),
we obtain an -dimensional limited diffraction solution to (1)

(10)

where and
. If , we have

(11)

where the subscript “second” represents the second derivative
of the zeroth-order X wave with respect to time (this will be
explained in the next section), ,
and “ ” is chosen for (11) from “ ” in (10). From the
above example, we see that a localized wavelet wave (9) can
be easily converted to a localized limited diffraction beam
(10) or (11) by the variable substitution method developed
in the last section. In the following, we will compare the
limited diffraction beam obtained in (11) to other 3-D limited
diffraction beams obtained previously.

IV. COMPARISON WITH OTHER LIMITED DIFFRACTION BEAMS

The limited diffraction solution (11) in the last section is
called the second-derivative X wave because it is the second
derivative of the zeroth-order X wave [15] with respect to
time. This can be seen from its spectrum. Using the following
Laplace transform pair [29],

for

(12)
where the Laplace transform is defined as

(13)

and assuming that is the wavenumber, ,
and , one can easily verify that the
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Fourier transform of (11) gives

(14)

In Eqs. (12) and (14), denotes the th-order Bessel
function of the first kind, is the Gamma function, and

is defined as the following step function,

for
otherwise

(15)

and is the angular frequency. Compare (14) to the spectrum
of the X waves obtained previously ((26) of [15]), it is seen
that (14) is a special case for and in
[15]. From the properties of the Fourier transform, we know
that (11) is proportional to the second derivative of (17) in [15]
because multiplication of in the Fourier domain is equal
to the second-derivative in the time domain (see also (38) in
[14]). Comparing (14) to the spectrum of a limited diffraction
beam obtained by Donnelly et al. ((20) of [23]), we see that
(11) is proportional to the first-derivative of that beam (see
also (13) of [23] or (37) of [14]).

The properties of the second-derivative X wave (11) are
shown in Fig. 1. For comparison, the first-derivative X wave
((13) of [23]) and the zero-th-order X wave ((17) of [15]) are
also shown. The axial beam plots, spectra, lateral beam plots,
and maximum sidelobes in lateral direction are given in Panels
(1), (2), (3), and (4) of Fig. 1, respectively.

From (11) we see that the asymptotic decay of the field
of the second-derivative X wave with the lateral distance
is of the order, , at the axial distance . This
is similar to that of the limited diffraction beam obtained
by Donnelly et al. [23] and is different from the
zeroth-order X wave [15] (Panel (3) of Fig. 1). In
addition, the spectrum of the second-derivative X wave is
also similar to that of the first-derivative X wave [23]. It is
a band-pass function and is different from that of the zeroth-
order X wave (exponential function) (Panel (2) of Fig. 1).
However, the maximum sidelobes of these limited diffraction
beams remain about the same (Panel (4) of Fig. 1) and their
asymptotic behavior is of the order . Fortunately, several
methods have been developed recently to reduce the sidelobes
of limited diffraction beams [27], [28].

V. CONCLUSION

We have developed a novel approach that can convert
any diffracting solution of the isotropic-homogeneous wave
equation to a limited diffraction solution. As an example,
the method was applied to a wavelet solution derived by
Kaiser et al. [24]–[26] to obtain a localized limited diffraction
beam that is called the second-derivative X wave because it
is proportional to the second derivative of the zeroth-order
X wave [15] (or the first derivative of the first-derivative X

(1) (3)

(2) (4)

Fig. 1. Axial beam profiles of the second-derivative X wave (full lines), the
first-derivative X wave (dotted lines) and the zeroth-order X wave (dashed
lines) at ~r = 0. (2) The spectra of (1). (3) The lateral, r, profiles of the
beams at z = c1t, where c1 = c= cos � is the phase velocity of the waves.
(4) The profiles of the waves along the X branches. The parameters used are
as follows:a0 = 0.1 mm, 0.22 mm, and 0.35 mm for the zeroth-order, the
first-derivative, and the second-derivative X waves, respectively; the Axicon
angle, �, is 6.6�; and the real-part of the waves are used in the plots. Notice
that the vertical scales are different in each panel.

wave [23]). This example establishes a relationship between
localized limited diffraction beams and the wavelet waves.
According to the simulation and experiment in [15] and
[16], the second-derivative X wave can also be produced
approximately with a practical ultrasonic transducer of finite
aperture over a large depth of field (having an almost constant
lateral and axial resolutions in the depth of field).

APPENDIX

Prove (7) is a solution to (1).
Proof: assume that

(A1)

and

(A2)

then (7) is given by

(A3)
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It is easy to show that

(A4)

and

(A5)

Therefore,

(A6)

Proved.
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