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Abstract

We present the theory, the experimental evidence and fundamental phys-
ical consequences concerning the existence of families of undistorted progres-

sive waves (UPWs) of arbitrary speeds 0 � v < 1, which are solutions of

the homogeneous wave equation, Maxwell equations, Dirac, Weyl and Klein-

Gordon equations.
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1 Introduction

In this paper we present the theory, the experimental evidence, and the fundamental
physical consequences concerning the existence of families of undistorted progressive
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waves (UPWs)(�) moving with arbitrary speeds(��) 0 � v < 1. We show that the
main equations of theoretical physics, namely: the scalar homogeneous wave equa-
tion (HWE); the Klein-Gordon equation (KGE); the Maxwell equations, the Dirac
and Weyl equations have UPWs solutions in a homogeneous medium, including the
vacuum. By UPW, following Courant and Hilbert[1] we mean that the UPW waves
are distortion free, i.e. they are translationally invariant and thus do not spread, or
they reconstruct their original form after a certain period of time. Explicit examples
of how to construct the UPWs solutions for the HWE are found in Appendix A.
The UPWs solutions to any �eld equations have in�nite energy. However, using the
�nite aperture approximation (FAA) for di�raction (Appendix A), we can project
quasi undistorted progressive waves (QUPWs) for any �eld equation which have
�nite energy and can then in principle be launched in physical space.

In section 2 we show results of a recent experiment proposed and realized by
us where the measurement of the speeds of the peaks of a FAA to a subluminal(�)

Bessel pulse [eq.(2.1)] and of the FAA to a superluminal X-wave [eq.(2.5)] are done.
The results are in excellent agreement with the theoretical velocities of the exact
solutions.1

In section 3 we discuss some examples of UPWs solutions of Maxwell equa-
tions; (i) subluminal solutions which are interesting concerning some recent attempts
appearing in the literature[2;3;4] of construction of purely electromagnetic particles
(PEP) and (ii) a superluminal UPW solution of Maxwell equations called the su-
perluminal electromagnetic X-wave[5] (SEXW). We brie
y discuss how to launch a
FAA to SEXW. In view of the experimental results presented in section 2 we are
con�dent that such electromagnetic waves will be produced in the next few years. In
section 4 we discuss the important question concerning the speed of propagation of

0(�)UPW is used for the singular, i.e., for undistorted progressive wave.
0(��)We use units where c = 1, c being the so called velocity of light in vacuum.
0(�)In this experiment the waves are sound waves in water and, of course, the meaning of the

words subluminal, luminal and superluminal in this case is that the waves travel with speed less,
equal or greater than cs, the so called velocity of sound in water.

1Note added: it is important to emphasize that the FAA to the exact solutions of the HWE
(describing sound waves) that have been produced in our experiments are pulses of compact suport
in the space domain and so have fronts. The fronts of a wave satisfying the HWE (or Maxwell
equations) always propagate with the speed paramenter that appears in the wave equation. This
means,e.g.. that the superluminal motion of the peak of a superluminal X-wave cannot endures
for ever, it last until the peak catches the front. This issue is discussed at lenght in J. E. Maiorino
and W. A. Rodrigues, Jr., What is superluminal wave motion?, Science and Technology Magazine

2(4), 1999. electronic journal at http://www.cptec.br/stm
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the energy carried by superluminal UPWs solutions of Maxwell equations, clearing
some misconceptions found in the literature. In section 5 we show that the experi-
mental production of a superluminal electromagnetic wave implies in a breakdown
of the Principle of Relativity. In section 6 we present our conclusions.

Appendix B presents a uni�ed theory of how to construct UPWs of arbitrary
speeds 0 � v < 1 which are solutions of Maxwell, Dirac and Weyl equations. Our
uni�ed theory is based on the Cli�ord bundle formalism[6;7;8;9;10] where all �elds
quoted above are represented by objects of the same mathematical nature. We take
the care of translating all results in the standard mathematical formalisms used by
physicists in order for our work to be usefull for a larger audience.

Before starting the technical discussions it is worth to brie
y recall the history of
the UPWs of arbitrary speeds 0 � v <1, which are solutions of the main equations
of theoretical physics.

To the best of our knowledge H. Bateman[11] in 1913 was the �rst person to
present a subluminal UPW solution of the HWE. This solution corresponds to what
we called the subluminal spherical Bessel beam in Appendix A [see eq.(A.31)]. Ap-
parently this solution has been rediscovered and used in diverse contexts many
times in the literature. It appears, e.g., in the papers of Mackinnon[12] of 1978 and of
Gueret and Vigier[13] and more recently in the papers of Barut and collaborators[14;15].
In particular in[14] Barut also shows that the HWE has superluminal solutions. In
1987 Durnin and collaborators rediscovered a subluminal UPW solution of the HWE
in cylindrical coordinates[16;17;18]. These are the Bessel beams of section A4 [see
eq.(A.41)]. We said rediscovered because these solutions are known at least since
1941, as they are explicitly written down in Stratton's book[19]. The important point
here is that Durnin[16] and collaborators constructed an optical subluminal Bessel
beam. At that time they didn't have the idea of measuring the speed of the beams,
since they were interested in the fact that the FAA to these beams were quasi UPWs
and could be very usefull for optical devices. Indeed they used the term \di�raction-
free beams" which has been adopted by some other authors later. Other authors
still use for UPWs the term non-dispersive beams. We quote also that Hsu and
collaborators[20] realized a FAA to the J0 Bessel beam [eq.(A.41)] with a narrow band
PZT ultrasonic transducer of non-uniform poling. Lu and Greenleaf[21] produced the
�rst J0 nondi�racting annular array transducers with PZT ceramic/polymer com-
posite and applied it to medical acoustic imaging and tissue characterization[22;23].
Also Campbell et al[24] used an annular array to realize a FAA to a J0 Bessel beam
and compared the J0 beam to the so called axicon beam [25]. For more on this topic
see[26].
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Luminal solutions of a new kind for the HWE and Maxwell equations, also
known as focus wave mode [FWM] (see Appendix A), have been discovered by
Brittingham [27] (1983) and his work inspired many interesting and important studies
as, e.g.,[29�40].

To our knowledge the �rst person to write about the possibility of a superluminal
UPW solution of HWE and, more important, of Maxwell equations was Band[41;42].
He constructed a superluminal electromagnetic UPW from the modi�ed Bessel beam
[eq.(A.42)] which was used to generate in an appropriate way an electromagnetic
potential in the Lorentz gauge. He suggested that his solution could be used to
eventually launch a superluminal wave in the exterior of a conductor with cylin-
drical symmetry with appropriate charge density. We discuss more some of Band's
statements in section 4.

In 1992 Lu and Greenleaf[43] presented the �rst superluminal UPW solution
of the HWE for acoustic waves which could be launched by a physical device[44].
They discovered the so called X-waves, a name due to their shape (see Fig. 3).
In the same year Donnelly and Ziolkowski[45] presented a thoughtfull method for
generating UPWs solutions of homogeneous partial equations. In particular they
studied also UPW solutions for the wave equation in a lossy in�nite medium and to
the KGE. They clearly stated also how to use these solutions to obtain through the
Hertz potential method (see appendix B, section B3) UPWs solutions of Maxwell
equations.

In 1993 Donnely and Ziolkowski[46] reinterpreted their study of[45] and obtained
subluminal, luminal and superluminal UPWs solutions of the HWE and of the KGE.
In Appendix A we make use of the methods of this important paper in order to obtain
some UPWs solutions. Also in 1992 Barut and Chandola[47] found superluminal
UPWs solutions of the HWE. In 1995 Rodrigues and Vaz[48] discovered in quite
an independent way(�) subluminal and superluminal UPWs solutions of Maxwell
equations and the Weyl equation. At that time Lu and Greenleaf[5] proposed also
to launch a superluminal electromagnetic X-wave.(��)

In September 1995 Professor Ziolkowski took knowledge of[48] and informed one
of the authors [WAR] of his publications and also of Lu's contributions. Soon a
collaboration with Lu started which produced this paper. To end this introduction

1(�)Rodrigues and Vaz are interested in obtaining solutions of Maxwell equations characterized
by non-null �eld invariants, since solutions of this kind are[49;50] necessary in proving a surprising
relationship between Maxwell and Dirac equations.

1(��)A version of [5] was submitted to IEEE Trans. Antennas Propag. in 1991. See reference
40 of[43].
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we must call to the reader's attention that in the last few years several important ex-
periments concerning the superluminal tunneling of electromagnetic waves appeared
in the literature[51;52]. Particularly interesting is Nimtz's paper[53] announcing that
he transmitted Mozart's Symphony # 40 at 4.7c through a retangular waveguide.
The solutions of Maxwell equations in a waveguide lead to solutions of Maxwell
equations that propagate with subluminal or superluminal speeds. These solutions
can be obtained with the methods discussed in this paper and will be discussed in
another publication.

2 Experimental Determination of the Speeds of

the Peaks of Acoustic Finite Aperture Bessel

Pulses and X-Waves.

In appendix A we show the existence of several UPWs solutions to the HWE, in
particular the subluminal UPWs Bessel beams [eq.(A.36)] and the superluminal
UPWs X-waves [eq.(A.52)]. Theoretically the UPWs X-waves, both the broad-
band and band limited [see eq.(2.4)] travel with speed v = cs= cos � > 1. Since
only FAA to these X-waves can be launched with appropriate devices, the question
arises if some region in a given FAA X-wave travel also with speed greater than cs,
at least for a while2. To �nd the answer we did the experiments described below. We
present the results of measurements of the speeds of the peaks of a FAA to a broad
band Bessel beam, called a Bessel pulse (see below) and of a FAA to a band limited
X-wave, both moving in water. We write the formulas for these beams inserting
into the HWE the parameter cs known as the speed of sound in water. In this way
the dispersion relation [eq.(A.37)] must read

!2

c2s
� k2 = �2 : (2.1)

Then we write for the Bessel beams

�<
Jn(t; ~x) = Jn(��)e

i(kz�!t+n�); n = 0; 1; 2; : : : (2.2)

2Note added: we emphasize once more that all FAA X-waves generetated in our experiments
are pulses of �nite time duration. As such they have fronts, which as well known propaget with
the speed cs. This issue is discussed in details in J. E.Maiorino and W. A. Rodrigues, Jr., What is
Superluminal Wave Motion?, Science and Technology Magazine 2(4), 1999. electronic journal at
http://www.cptec.br
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Bessel pulses are obtained from eq.(2.2) by weighting it with a transmitting transfer
function, T (!) and then linearly superposing the result over angular frequency !,
i.e., we have

�<
JBBn(t; ~x) = 2�ein�Jn(��)F�1[T (!)eikz]; (2.3)

where F�1 is the inverse Fourier transform. The FAA to �<
JBBn

will be denoted by
FAA�<

JBBn
(or �<

FAJn
).

We recall that the X-waves are given by eq.(A.52), i.e.,

�>
Xn
(t; ~x) = ein�

Z 1
0

B(k)Jn(k� sin �)e
�k[a0�i(z cos ��cst)]dk ; (2.4)

where k = k= cos �; k = !=cs. By choosing B(k) = a0 we have the in�nite aperture
broad bandwidth X-wave [eq.(A.53)] given by

�>
XBBn(t; ~x) =

a0(� sin �)
nein�p

M(� +
p
M)n

;

(2.5)

M = (� sin �)2 + � 2; � = [a0 � i(z cos � � cst)]:

A FAA to �>
XBBn

will be denoted by FAA�>
XBBn

. When B(k) in eq.(2.4) is di�erent

from a constant, e.g., if B(k) is the Blackman window function we denote the X-
wave by �>

XBLn
, where BL means band limited. A FAA to �>

XBLn
will be denoted

FAA�XBLn . Also when T (!) in eq.(2.3) is the Blackman window function we denote
the respective wave by �JBLn .

As discussed in Appendix A and detailed in[26;44] to produce a FAA to a given
beam the aperture of the transducer used must be �nite. In this case the beams
produced, in our case FAA�JBL0 and FAA�XBB0

, have a �nite depth of �eld[26] (DF)
and can be approximately produced by truncating the in�nite aperture beams �JBL0

and �XBB0
(or �XBL0) at the transducer surface (z = 0). Broad band pulses for

z > 0 can be obtained by �rst calculating the �elds at all frequencies with eq.(A.28),
i.e.,

ee�FA(!; ~x) =
1

i�

Z a

0

Z �

��

�0d�0d�0
ee�(!; ~x0)eikR

R2
z

(2.6)

+
1

2�

Z a

0

Z �

��

�0d�0d�0
ee�(!; ~x0)eikR

R3
z;
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where the aperture weighting function
ee�(!; ~x0) is obtained from the temporal Fourier

transform of eqs.(2.3) and (2.4). If the aperture is circular of radius a [as in eq.(2.6)],
the depth of �eld of the FAA�JBL0 pulse, denoted BZmax and the depth of �eld of
the FAA�XBB0

or FAA �XBL0 denoted by XZmax are given by[26]

BZmax = a

s�
!0

cs�

�2

� 1 ; XZmax = a cot �: (2.7)

For the FAA�JBL0 pulse we choose T (!) as the Blackman window function[54]

that is peaked at the central frequency f0 = 2:5MHz with a relative bandwidth of
about 81% (�6 dB bandwidth divided by the central frequency). We have

B(k) =

8<: a0

�
0:42� 0:5

�k

k0
+ 0:08 cos

2�k

k0

�
; 0 � k � 2k0;

0 otherwise:
(2.8)

The \scaling factor" in the experiment is � = 1202:45m�1 and the weighting functionee�JBB0
(!; ~x) in eq.(2.6) is approximated with stepwise functions. Practically this is

done with the 10-element annular array transfer built by Lu and Greenleaf[26;44].
The diameter of the array is 50mm. Fig. 1(��) shows the block diagram for the
production of FAA �>

XBL0
and FAA�<

JBL0
. The measurement of the speed of the

FAA Bessel pulse has been done by comparing the speed with which the peak of the
FAA Bessel pulse travels with the speed of the peak of a pulse produced by a small
circular element of the array (about 4mm or 6:67� in diameter, where � is 0.6mm
in water). This pulse travels with speed cs = 1:5mm=�s. The distance between
the peaks and the surface of the transducer are 104.33(9)mm and 103.70(5)mm for
the single-element wave and the Bessel pulse, respectively, at the same instant t of
measurement. The results can be seen in the pictures taken from of the experiment
in Fig. 2. As predicted by the theory developed in Appendix A the speed of the
Bessel pulse is 0.611(3)% slower than the speed cs of the usual sound wave produced
by the single element.

The measurement of the speed of the central peak of the FAA �>
XBL0

wave
obtained from eq.(2.4) with a Blackman window function [eq.(2.8)] has been done in
the same way as for the Bessel pulse. The FAA�XBL0 wave has been produced by
the 10-element array transducer of 50mm of diameter with the techniques developed
by Lu and Greenleaf[26;44]. The distances traveled at the same instant t by the single

2(��)Reprinted with permission from �g. 2 of[44].
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element wave and the X-wave are respectively 173.48(9)mm and 173.77(3)mm. Fig.
3 shows the pictures taken from the experiment. In this experiment the axicon angle
is � = 40. The theoretical speed of the in�nite aperture X-wave is predicted to be
0.2242% greater then cs. We found that the FAA�XBB0

wave traveled with speed
0.267(6)% greater then cs !

These results, which we believe are the �rst experimental determination of the
speeds of subluminal and superluminal quasi-UPWs FAA�>

JBL0
and FAA�<

JBB0
solu-

tions of the HWE, together with the fact that, as already quoted, Durnin[16] produced
subluminal optical Bessel beams, give us con�dence that FAA to electromagnetic
subluminal and superluminal waves may be physically launched with appropriate
devices. In the next section we study in particular the superluminal electromagnetic
X-wave (SEXW).

It is important to observe here the following crucial points: (i) The FAA �XBBn

is produced by the source (transducer) in a short period of time �t. However,
di�erent parts of the transducer are activated at di�erent times, from 0 to �t,
calculated from eqs.(A.9) and (A.28). As a result the wave is born as an integral
object for time �t and its peak propagates for a while with superluminal speed. The
phenomenon of the superluminal propagation of the peak rests until it catches the
front of the wave, which by a well known result propagates with the speed c(= 1):
This is exactly what has been seen in the experiments and is corroborated by the
computer simulations we did for the superluminal electromagnetic waves (see section
3).

(ii) One can �nd in almost all textbooks that the velocity of transport of energy
for waves obeying the scalar wave equation�

1

c2
@2

@t2
�r2

�
� = 0 (2.9)

is given by

~v" =
~S

u
; (2.10)

where ~S is the 
ux of momentum and u is the energy density, given by

~S = r�@�
@t

; u =
1

2

"
(r�)2 + 1

c2

�
@�

@t

�2
#
; (2.11)

from which it follows that

v" =
j~Sj
u
� cs : (2.12)
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At �rst sight the result of our experiement with the X-waves may suggest that
energy is 
owing in our acoustic experiment at a speed cs= cos �, since it is the
energy of the wave that activates the detector (hydro-phone). However, it can be
shown ( see J. Emilio Maiorino and W. A. Rodrigues, Jr., What is superluminal
wave motion?, Science and Technology Magazine 2(4), 1999. electronic journal at
http://www.cptec.br.) that since the peaks at two di�erent times are not causally
connected, there is no need for the energy to travel at superluminal speed, and it the
energy always travel with a speed less than the limit speed ( the speed paramenter
that appears in the wave equation) 3

3When this paper has been written in 1997 Rodrigues and Lu did not know that results and
in the published version of the paper it is writte:\This shows explicitly that the de�nition of v"
is meaningless. This fundamental experimental result must be kept in mind when we discuss the
meaning of the velocity of transport of electromagnetic waves in section 4."
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Figure 1: Block diagram of acoustic production of Bessel pulse and X-Waves.
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Figure 2: Propagation speed of the peak of Bessel pulse and its comparison with that
of a pulse produced by a small circular element (about 4 mm or 6.67 � in diameter,
where � is 0.6 mm in water). The Bessel pulse was produced by a 50 mm diameter
transducer. The distances between the peaks and the surface of the transducer
are 104.339 mm and 103.705 mm for the single-element wave and the Bessel pulse,
respectively. The time used by these pulses is the same. Therefore, the speed of the
peak of the Bessel pulse is 0.611(3)% slower than that of the single-element wave.
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Figure 3: Propagation speed of peak of X-wave and its comparison with that of
a pulse produced by small circular element (about 4 mm or 6.67 �, where � is
0.6 mm in water). The X-wave was produced by a 50 mm diameter transducer.
The distance between the peaks and the surface of the transducer are 173.489 mm
and 173.773 mm for the single-element wave and the X-wave, respectively. The time
used by these pulses is the same. Therefore, the speed of the peak of the X-wave
is 0.2441(8)% faster than that of the single-element wave. The theoretical ratio for

X-waves and the speed of sound is
(cs= cos � � cs)

cs
= 0:2442% for � = 4o.

13



3 Subluminal and Superluminal UPWs Solutions

of Maxwell Equations(ME)

In this section we make full use of the Cli�ord bundle formalism (CBF) resumed
in Appendix B, but we give translation of all the main results in the standard vec-
tor formalism used by physicists. We start by reanalyzing in section 3.1 the plane
wave solutions (PWS) of ME with the CBF. We clarify some misconceptions and ex-
plain the fundamental role of the duality operator 
5 and the meaning of i =

p�1 in
standard formulations of electromagnetic theory. Next in section 3.2 we discuss sub-
luminal UPWs solutions of ME and an unexpected relation between these solutions
and the possible existence of purely electromagnetic particles (PEPs) envisaged by
Einstein[55], Poincar�e[56], Ehrenfest[57] and recently discussed by Waite, Barut and
Zeni[2;3]. In section 3.3 we discuss in detail the theory of superluminal electromag-
netic X-waves (SEXWs) and how to produce these waves by appropriate physical
devices.

3.1 Plane Wave Solutions of Maxwell Equations

We recall that Maxwell equations in vacuum can be written as [eq.(B.6)]

@F = 0; (3.1)

where F sec
V2(M) � sec C`(M). The well known PWS of eq.(3.1) are obtained

as follows. We write in a given Lorentzian chart hx�i of the maximal atlas of M
(section B2) a PWS moving in the z-direction

F = fe
5kx ; (3.2)

k = k�
�; k
1 = k2 = 0; x = x�
�; (3.3)

where k; x 2 sec
V1(M) � sec C`(M) and where f is a constant 2-form. From

eqs.(3.1) and (3.2) we obtain
kF = 0 (3.4)

Multiplying eq.(3.4) by k we get
k2F = 0 (3.5)

and since k 2 sec
V1(M) � sec C`(M) then

k2 = 0 $ k0 = �j~kj = �k3; (3.6)
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i.e., the propagation vector is light-like. Also

F 2 = F: F + F ^ F = 0 (3.7)

as can be easily seen by multiplying both members of eq.(3.4) by F and taking into
account that k 6= 0. Eq(3.7) says that the �eld invariants are null.

It is interesting to understand the fundamental role of the volume element 
5
(duality operator) in electromagnetic theory. In particular since e
5kx = cos kx +


5 sin kx, 
5 � i, writing F = ~E + i ~B (see eq.(B.17)), f = ~e1 + i~e2, we see that

~E + i ~B = ~e1 cos kx� ~e2 sin kx+ i(~e1 sin kx + ~e2 cos kx) : (3.8)

From this equation, using @F = 0, it follows that ~e1:~e2 = 0, ~k:~e1 = ~k:~e2 = 0 and
then

~E: ~B = 0 : (3.9)

This equation is important because it shows that we must take care with the i =p�1 that appears in usual formulations of Maxwell Theory using complex electric
and magnetic �elds. The i =

p�1 in many cases unfolds a secret that can only be
known through eq.(3.8). It also follows that ~k: ~E = ~k: ~B = 0, i.e., PWS of ME are
transverse waves. We can rewrite eq.(3.4) as

k
0
0F
0 = 0 (3.10)

and since k
0 = k0 + ~k; 
0F
0 = � ~E + i ~B we have

~kf = k0f: (3.11)

Now, we recall that in C`+(M) (where, as we say in Appendix B, the typical
�ber is isomorphic to the Pauli algebra C`3;0) we can introduce the operator of space
conjugation denoted by � such that writing f = ~e + i~b we have

f � = �~e + i~b ; k�0 = k0 ; ~k� = �~k: (3.12)

We can now interpret the two solutions of k2 = 0, i.e. k0 = j~kj and k0 = �j~kj as
corresponding to the solutions k0f = ~kf and k0f

� = �~kf �; f and f � correspond
in quantum theory to \photons" of positive or negative helicities. We can interpret
k0 = j~kj as a particle and k0 = �j~kj as an antiparticle.

Summarizing we have the following important facts concerning PWS of ME: (i)
the propagation vector is light-like, k2 = 0; (ii) the �eld invariants are null, F 2 = 0;
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(iii) the PWS are transverse waves, i.e., ~k: ~E = ~k: ~B = 0.

3.2 Subluminal Solutions of Maxwell Equations and Purely Electromag-
netic Particles.

We take � 2 sec(
V0(M) � V4(M)) � sec C`(M) and consider the following

Hertz potential � 2 sec
V2(M) � sec C`(M) [eq.(B.25)]

� = �
1
2: (3.13)

We now write
�(t; ~x) = �(~x)e
5
t: (3.14)

Since � satis�es the wave equation, we have

r2�(~x) + 
2�(~x) = 0 : (3.15)

Solutions of eq.(3.15) (the Helmholtz equation) are well known. Here we consider
the simplest solution in spherical coordinates,

�(~x) = C
sin
r

r
; r =

p
x2 + y2 + z2; (3.16)

where C is an arbitrary real constant. From the results of Appendix B we obtain
the following stationary electromagnetic �eld, which is at rest in the reference frame
Z where hx�i are naturally adapted coordinates (section B2):

F0 =
C

r3
[sin 
t(�
r sin � sin'� � sin � cos � cos')
0
1

� sin
t(�
r sin � cos'+ � sin � cos � sin')
0
2

+ sin
t(� sin2 � � 2�)
0
3 + cos
t(� sin2 � � 2�)
1
2 (3.17)

+ cos
t(� sin � cos � sin'+ �
r sin � cos')
1
3

+ cos
t(�� sin � cos � cos'+ �
r sin � sin')
2
3]

with � = 
r cos 
r� sin
r and � = 3�+
2r2 sin
r. Observe that F0 is regular at
the origin and vanishes at in�nity. Let us rewrite the solution using the Pauli-algebra
in C`+(M). Writing (i � 
5)

F0 = ~E0 + i ~B0 (3.18)

we get
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~E0 = ~W sin
t; ~B0 = ~W cos 
t; (3.19)

with

~W = �C
�
�
y

r3
� �xz

r5
;��
x

r3
� �yz

r5
;
�(x2 + y2)

r5
� 2�

r3

�
: (3.20)

We verify that div ~W = 0, div ~E0 = div ~B0 = 0, rot ~E0+@ ~B0=@t = 0, rot ~B0�@ ~E0=@t =
0, and

rot ~W = 
 ~W: (3.21)

Now, from eq.(B.88) we know that T0 =
1

2
eF
0F is the 1-form representing the

energy density and the Poynting vector. It follows that ~E0� ~B0 = 0, i.e., the solution
has zero angular momentum. The energy density u = S00 is given by

u =
1

r6
[sin2 �(
2r2�2 + �2 cos2 �) + (� sin2 � � 2�)2] (3.22)

Then
R R R

IR3 u dv =1. As explained in section A.6 a �nite energy solution can be
constructed by considering \wave packets" with a distribution of intrinsic frequencies
F (
) satisfying appropriate conditions. Many possibilities exist, but they will not
be discussed here. Instead, we prefer to direct our attention to eq.(3.21). As it
is well known, this is a very important equation (called the force free equation[2])
that appears e.g. in hydrodynamics and in several di�erent situations in plasma
physics[58]. The following considerations are more important.

Einstein[55] among others (see[3] for a review) studied the possibility of construct-
ing purely electromagnetic particles (PEPs). He started from Maxwell equations for
a PEP con�guration described by an electromagnetic �eld Fp and a current density
Jp, where

@Fp = Jp (3.23)

and rightly concluded that the condition for existence of PEPs is

Jp:Fp = 0: (3.24)

This condition implies in vector notation

�p ~Ep = 0; ~jp: ~Ep = 0; ~jp � ~Bp = 0: (3.25)
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From eq.(3.24) Einstein concluded that the only possible solution of eq.(3.22) with
the subsidiary condition given by eq.(3.23) is Jp = 0. However, this conclusion is
correct, as pointed in[2;3], only if J2

p > 0, i.e., if Jp is a time-like current density.
However, if we suppose that Jp can be spacelike, i.e., J

2
p < 0, there exists a reference

frame where �p = 0 and a possible solution of eq.(3.24) is

�p = 0; ~Ep: ~Bp = 0; ~jp = KC ~Bp; (3.26)

where K = �1 is called the chirality of the solution and C is a real constant. In[2;3]

static solutions of eqs.(3.22) and (3.23) are exhibited where ~Ep = 0. In this case we

can verify that ~Bp satis�es

r� ~Bp = KC ~Bp: (3.27)

Now, if we choose F0 2 sec
V2(M) � sec C`(M) such that

F0 = ~E0 + i ~B0;
~E0 = ~Bp sin
t; ~B0 = ~Bp cos 
t

(3.28)

and 
 = KC > 0, we immediately realize that

@F0 = 0: (3.29)

This is an amazing result, since it means that the free Maxwell equations may
have stationary solutions that may be used to model PEPs. In such solutions the
structure of the �eld F0 is such that we can write

F0 = F
0

p + F = i ~W cos 
t + ~W sin
t;

@F
0

p = �@F = J
0

p;
(3.30)

i.e., @F0 = 0 is equivalent to a �eld plus a current. This fact opens several interesting
possibilities for modeling PEPs (see also[4]) and we discuss more this issue in another
publication.

We observe that moving subluminal solutions of ME can be easily obtained
choosing as Hertz potential, e.g.,

�<(t; ~x) = C
sin
�<
�<

exp[
5(!<t� k<z)]
1
2; (3.31)

!2
< � k2< = 
2

<;

�< = [x2 + y2 + 
2<(z � v<t)
2]; (3.32)


< =
1p

1� v2<
; v< = d!<=dk<:
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We are not going to write explicitly the expression for F< corresponding to �<

because it is very long and will not be used in what follows.
We end this section with the following observations: (i) In general for sublu-

minal solutions of ME (SSME) the propagation vector satis�es an equation like
eq.(3.30). (ii) As can be easily veri�ed, for a SSME the �eld invariants are non-
null. (iii) A SSME is not a transverse wave. This can be seen explicitly from
eq.(3.21). Conditions (i), (ii) and (iii) are in contrast with the case of the PWS of
ME. In[49;50] Rodrigues and Vaz showed that for free electromagnetic �elds (@F = 0)
such that F 2 6= 0, there exists a Dirac-Hestenes equation (see section A.8) for

 2 sec(
V0(M) +

V2(M) +
V4(M)) � sec C`(M) where F =  
1
2 e . This was the

reason why Rodrigues and Vaz discovered subluminal and superluminal solutions of
Maxwell equations (and also of Weyl equation)[48] which solve the Dirac-Hestenes
equation [eq.(B.40)].

3.3 The Superluminal Electromagnetic X-Wave (SEXW)

To simplify the matter in what follows we now suppose that the functions �Xn

[eq.(A.52)] and �XBBn [eq.(A.53)] which are superluminal solutions of the scalar
wave equation are 0-forms sections of the complexi�ed Cli�ord bundle C`C(M) =
IC 
 C`(M) (see section B4). We rewrite eqs.(A.52) and (A.53) as(�)

�Xn
(t; ~x) = ein�

Z 1
0

B(k)Jn(k� sin �)e
�k[a0�i(z cos ��t)]dk (3.33)

and choosing B(k) = a0, we have

�XBBn(t; ~x) =
a0(� sin �)

nein�p
M(� +

p
M)n

(3.34)

M = (� sin �)2 + � 2; � = [a0 � i(z cos � � t)]: (3.35)

As in section 2, when a �nite broadband X-wave is obtained from eq.(3.31) with
B(k) given by the Blackman spectral function [eq.(2.8)] we denote the resulting X-
wave by �XBLn (BL means band limited wave). The �nite aperture approximation
(FAA) obtained with eq.(A.28) to �XBLn will be denoted FAA�XBLn and the FAA
to �XBBn will be denoted by FAA�XBBn . We use the same nomenclature for the
electromagnetic �elds derived from these functions. Further, we suppose now that

3(�)In what follows n = 0; 1; 2; : : :
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the Hertz potential �, the vector potential A and the corresponding electromagnetic
�eld F are appropriate sections of C`C(M). We take

� = �
1
2 2 sec IC 
V2(M) � sec C`C(M); (3.36)

where � can be �Xn
;�XBBn ;�XBLn , FAA �XBBn or FAA�XBLn . Let us start by

giving the explicit form of the FXBBn , i.e., the SEXWs. In this case eq.(B.81) gives
� = ~�m and

~�m = �XBBnz (3.37)

where z is the versor of the z-axis. Also, let �, � be respectively the versors of the
� and � directions where (�; �; z) are the usual cylindrical coordinates. Writing

FXBBn = ~EXBBn + 
5 ~BXBBn (3.38)

we obtain from equations (A.53) and (B.25):

~EXBBn = �
�

�

@2

@t@�
�XBBn + �

@2

@t@�
�XBBn ; (3.39)

~BXBBn = �
@2

@�@z
�XBBn + �

1

�

@2

@�@z
�XBBn + z

�
@2

@z2
�XBBn �

@2

@t2
�XBBn

�
; (3.40)

Explicitly we get for the components in cylindrical coordinates:

( ~EXBBn)� = �1

�
n
M3p
M

�XBBn ; (3.41a)

( ~EXBBn)� =
1

�
i

M6p
MM2

�XBBn ; (3.41b)

( ~BXBBn)� = � cos �( ~EXBBn)�; (3.41c)

( ~BXBBn)� = cos �( ~EXBBn)�; (3.41d)

( ~BXBBn)z = sin2 �
M7p
M

�XBBn . (3.41e)

The functions Mi, (i = 2; : : : ; 7) in (3.41) are:

M2 = � +
p
M ; (3.42a)

M3 = n +
1p
M
� ; (3.42b)

M4 = 2n +
3p
M
� ; (3.42c)
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M5 = � + n
p
M ; (3.42d)

M6 = (�2 sin2 �
M4

M
� nM3)M2 + n�2

M5

M
sin2 �; (3.42e)

M7 = (n2 � 1)
1p
M

+ 3n
1

M
� + 3

1p
M3

� 2. (3.42f)

We immediately see from eqs.(3.41) that the FXBBn are indeed superluminal
UPWs solutions of ME, propagating with speed 1= cos � in the z-direction. That
FXBBn are UPWs is trivial and that they propagate with speed c1 = 1= cos � follows
because FXBBn depends only on the combination of variables (z � c1t) and any
derivatives of �XBBn will keep the (z � c1t) dependence structure.

Now, the Poynting vector ~PXBBn and the energy density uXBBn for FXBBn are
obtained by considering the real parts of ~EXBBn and ~BXBBn . We have

(~PXBBn)� = �Ref( ~EXBBn)�gRef( ~BXBBn)zg; (3.43a)

(~PXBBn)� = Ref( ~EXBBn)�gRef( ~BXBBn)zg; (3.43b)

(~PXBBn)z = cos �
h
jRef( ~EXBBn)�gj2 + jRef( ~EXBBn)�gj2

i
; (3.43c)

uXBBn = (1 + cos2 �)
h
jRef( ~EXBBn)�gj2 + jRef( ~EXBBn)�gj2

i
+ jRef( ~BXBBn)zgj2:

(3.44)
The total energy of FXBBn is then

"XBBn =

Z �

��

d�

Z +1

�1

dz

Z 1
0

� d� uXBBn (3.45)

Since as z ! 1, ~EXBBn decreases as 1=jz � t cos �j1=2, what occurs for the X-
branches of FXBBn , "XBBn may not be �nite. Nevertheless, as in the case of the
acoustic X-waves discussed in section 2, we are quite sure that a FAAFXBLn can
be launched over a large distance. Obviously in this case the total energy of the
FAAFXBLn is �nite.

We now restrict our attention to FXBB0
. In this case from eq.(3.40) and eqs.(3.43)

we see that ( ~EXBB0
)� = ( ~BXBB0

)� = (~PXBB0
)� = 0. In Fig. 4(�) we see the

amplitudes of Ref�XBB0
g [4(1)], Ref( ~EXBB0

)�g [4(2)], Ref( ~BXBB0
)�g [4(3)] and

Ref( ~BXBB0
)zg [4(4)]. Fig. 5 shows respectively (~PXBB0

)� [5(1)], (~PXBB0
)z [5(2)]

and uXBB0
[5(3)]. The size of each panel in Figures 4 and 5 is 4m (�-direction) �

3(�)Figures 4, 5 and 6 were reprinted with permission from[5].
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2mm (z-direction) and the maxima and minima of the images in Figures 4 and 5
(before scaling) are shown in Table 1, in MKSA units(��).

Ref�XBB0
g Ref( ~EXBB0

)�g Ref( ~BXBB0
)�g Ref( ~BXBB0

)zg
max 1.0 9:5� 106 2:5� 104 6.1
min 0.0 �9:5� 106 �2:5� 104 �1:5

(~PXBB0
)� (~PXBB0

)z UXBB0

max 2:4� 107 2:4� 1011 1:6� 103

min �2:4� 107 0.0 0.0

Table 1: Maxima and Minima of the zeroth-order nondi�racting

electromagnetic X waves (units: MKSA).

Fig. 6 shows the beam plots of FXBB0
in Fig. 4 along one of the X-branches

(from left to right). Fig. 6(1) represents the beam plots of Ref�XBB0
g (full line),

Ref( ~EXBB0
)�g (dotted line), Ref( ~BXBB0

)�g (dashed line) and Ref( ~BXBB0
)zg (long

dashed line). Fig. 6(2) represents the beam plots of (~PXBB0
)� (full line), (~PXBB0

)z
(dotted line) and uXBB0

(dashed line).

3.4 Finite Aperture Approximation to FXBB0
and FXBL0

From eqs.(3.40), (3.43) and (3.44) we see that ~EXBB0
, ~BXBB0

, ~PXBB0
and uXBB0

are related to the scalar �eld �XBB0
. It follows that the depth of the �eld[5] (or non

di�racting distance | see section 2) of the FAAFXBB0
and of the FAAFXBL0 , which

of course are to be produced by a �nite aperture radiator, are equal and given by

Zmax = (D=2) cot �; (3.46)

where D is the diameter of the radiator and � is the axicon angle. It can be proved
also[5] that for �XBL0 (and more generally for �XBLn), that Zmax is independent of
the central frequency of the spectrum B(k) in eq.(3.1). Then if we want, e.g., that
FXBB0

or FXBL0 travel 115 km with a 20 m diameter radiator, we need � = 0:005o.
Figure 7 shows the envelope of RefFAA�XBB0

g obtained with the �nite aperture
approximation (FAA) given by eq.(A.28), with D = 20 m, a0 = 0:05 mm and
� = 0:005o, for distances z = 10 km [6(1)] and z = 100 km [6(2)], respectively,

3(��)Reprinted with permission from Table I of[5].
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from the radiator which is located at the plane z = 0. Figures 7(3) and 7(4) show
the envelope of RefFAA�XBL0g for the same distances and the same parameters
(D; a0 and �) where B(k) is the following Blackman window function, peaked at the
frequency f0 = 700 GHz with a 6 dB bandwidth about 576 GHz:

B(k) =

(
a0[0:42� 0:5 cos �k

k0
+ 0:08 cos 2�k

k0
]; 0 � k � 2k0;

0 otherwise;
(3.47)

where k0 = 2�f0=c (c = 300; 000km=s). From eq.(3.46) it follows that for the above
choice of D, a0 and �

Zmax = 115 km (3.48)

Figs. 8(1) and 8(2) show the lateral beam plots and Figs. 8(3) and 8(4) show the
axial beam plots respectively for RefFAA�XBB0

g and for RefFAA�XBL0g used to
calculate FXBB0

and FXBL0 . The full and dotted lines representX-waves at distances
z = 10 km and z = 100 km. Fig. 9 shows the peak values of RefFAA�XBB0

g
(full line) and RefFAA�XBL0g (dotted line) along the z-axis from z = 3:45 km to
z = 230 km. The dashed line represents the result of the exact �XBB0

solution. The
6 dB lateral and axial beam widths of �XBB0

, which can be measured in Fig 7(1)
and 7(2), are about 1.96 m and 0.17 mm respectively, and those of the FAA�XBL0

are about 2.5 m and 0.48 mm as can be measured from 7(3) and 7(4). For �XBB0

we can calculate[43;26] the theoretical values of the 6 dB lateral (BWL) and axial
(BWA) beam widths, which are given by

BWL =
2
p
3a0

j sin �j ; BWA =
2
p
3a0

j cos �j : (3.49)

With the values of D, a0 and � given above, we have BWL = 1:98 m and BWA =
0:17 mm. These are to be compared with the values of these quantities for the
FAA�XBL0 .

We remark also that eq.(3.46) says that Zmax does not depend on a0. Then we
can choose an arbitrarily small a0 to increase the localization (reduced BWL and
BWA) of the X-wave without altering Zmax. Smaller a0 requires that the FAA�XBL0

be transmitted with broader bandwidth. The depths of �eld of �XBB0
and of �XBL0

that we can measure in Fig. 9 are approximately 109 km and 110 km, very close to
the value given by eq.(3.46) which is 115 km.

We conclude this section with the following observations.

(i) In general both subluminal and superluminal UPWs solutions of ME have non
null �eld invariants and are not transverse waves. In particular our solutions
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have a longitudinal component along the z-axis. This result is important
because it shows that, contrary to the speculations of Evans[59], we do not
need an electromagnetic theory with a non zero photon-mass, i.e., with F
satisfying Proca equation in order to have an electromagnetic wave with a
longitudinal component. Since Evans presents evidence[59] of the existence on
longitudinal magnetic �elds in many di�erent physical situations, we conclude
that the theoretical and experimental study of subluminal and superluminal
UPW solutions of ME must be continued.

(ii) We recall that in microwave and optics, as it is well known, the electromag-
netic intensity is approximately represented by the magnitude of a scalar �eld
solution of the HWE. We already quoted in the introduction that Durnin[16]

produced an optical J0-beam, which as seen from eq.(3.1) is related to �XBB0

(�XBL0). If we take into account this fact together with the results of the
acoustic experiments described in section 2, we arrive at the conclusion that
subluminal electromagnetic pulses J0 and also superluminal X-waves can be
launched with appropriate antennas using present technology.

(iii) If we take a look at the structure of e.g. the FAA�XBB0
[eq.(3.40)] plus

eq.(A.28) we see that it is a \packet" of wavelets, each one traveling with
speed c. Nevertheless, the electromagnetic X-wave wave that is an inter-
ference pattern is such that its peak travels with speed c= cos � > 1. (This
indeed happens in the acoustic experiment with c 7! cs, see section 2). Since
as discussed above we can project an experiment to launch the peak of the
FAA�XBB0

from a point z1 to a point z2, the question arises: Is the existence
of superluminal electromagnetic waves in con
ict with Einstein's Special Rel-
ativity? We give our answer to this fundamental issue in section 5, but �rst
we discuss in section 4 the speed of propagation of the energy associated with
a superluminal electromagnetic wave.
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Figure 4: Real part of �eld components of the exact solution superluminal electro-
magnetic X-wave at distance z = ct= cos � (� = 0:005o, a0 = 0:05 mm, n = 0).
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Figure 5: Poynting 
ux and energy density of the exact solution superluminal elec-
tromagnetic X-wave at distance z = ct= cos �, (� = 0:005o, a0 = 0:05 mm, n = 0).
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Figure 6: (6.1) Beam plots along the X-branches of FXBB0
for Ref�XBB0

g or Hertz
potential, Ref( ~EXBB0
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)�g, and Ref( ~BXBB0

)zg. (6.2) Beam plots for

(~PXBB0
)� (full line), (~PXBB0

)z (dotted line) and uXBB0
(dashed line).
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Figure 7: 7(1) and 7(2) show the real part of FAA�XBB0
at distances z = 10 km

and z = 100 km from the radiator located at the plane z = 0 with D = 20 m and
� = 0:005o. 7(3) and 7(4) show the real parts of FAA�XBL0 for the same distances.
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4 The Velocity of Transport of Energy of the UPWs

Solutions of Maxwell Equations

4Motivated by the fact that the acoustic experiment of section 2 shows that the
energy of the FAA X-wave travels with speed greater than cs and since we found
in this paper UPWs solutions of Maxwell equations with speeds 0 � v < 1, the
following question arises naturally: Which is the velocity of transport of the energy
of a superluminal UPW (or quasi UPW) solution of ME?

We can �nd in many physics textbooks (e.g.[10]) and in scienti�c papers[41] the
following argument. Consider an arbitrary solution of ME in vacuum, @F = 0. Then
if F = ~E + i ~B (see eq.(B.17)) it follows that the Poynting vector and the energy
density of the �eld are

~P = ~E � ~B; u =
1

2
( ~E2 + ~B2): (4.1)

It is obvious that the following inequality always holds:

v" =
j~P j
u
� 1: (4.2)

Now, the conservation of energy-momentum reads, in integral form over a �nite
volume V with boundary S = @V

@

@t

�Z Z Z
V

dv
1

2
( ~E2 + ~B2)

�
=

I
S

d~S: ~P (4.3)

Eq.(4.3) is interpreted saying that
H
S
d~S: ~P is the �eld energy 
ux across the surface

S = @V , so that ~P is the 
ux density | the amount of �eld energy passing through a
unit area of the surface in unit time. For plane wave solutions of Maxwell equations,

v" = 1 (4.4)

4Note added: this section is completely out to dated. It is maintained here only for historical
reasons and because of the extraordinary example concerning the stocked angular momentum in
a static electric plus a static magnetic �eld, a phenomenon that has been observed experimentally
in G. M. Graham and D. G. Lahoz, Observation of Static Electromagnetic Angular Momentum in
Vacuum Nature, 285, 154-155 (1980). . .We now know that the energy always travel at the speed of
light. See, J. E. Maiorino and W. A. Rodrigues, Jr., What is superluminal wave motion?, Science
and Technolgy Magazine 2(4) (1999), electronic journal at http://www.cptec.br/stm.
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and this result gives origin to the \dogma" that free electromagnetic �elds transport
energy at speed v" = c = 1.

However v" � 1 is true even for subluminal and superluminal solutions of ME,
as the ones discussed in section 3. The same is true for the superluminal modi�ed
Bessel beam found by Band[41] in 1987. There he claims that since v" � 1 there is
no con
ict between superluminal solutions of ME and Relativity Theory since what
Relativity forbids is the propagation of energy with speed greater than c.

Here we challenge this conclusion. The fact is that as is well known ~P is not
uniquely de�ned. Eq(4.3) continues to hold true if we substitute ~P 7! ~P + ~P 0 with

r: ~P 0 = 0. But of course we can easily �nd for subluminal, luminal or superluminal
solutions of Maxwell equations a ~P 0 such that

j~P + ~P 0j
u

� 1: (4.5)

We come to the conclusion that the question of the transport of energy in super-
luminal UPWs solutions of ME is an experimental question. For the acoustic su-
perluminal X-solution of the HWE (see section 2) the energy around the peak area
seems to 
ow with speed c1 = cs= cos � (although the \canonical" formula [eq.(2.10)]
predicts that the energy 
ows with v" < cs). Since we can see no possibility for the
�eld energy of the superluminal electromagnetic wave to travel outside the wave we
are con�dent to state that the velocity of energy transport of superluminal electro-
magnetic waves is superluminal.

Before ending we give another example to illustrate that eq.(4.2) (as is the
case of eq.(2.10)) is devoid of physical meaning. Consider a spherical conductor in
electrostatic equilibrium with uniform super�cial charge density (total charge Q)
and with a dipole magnetic moment. Then, we have

~E = Q
r

r2
; ~B =

C

r3
(2 cos � r+ sin � �) (4.6)

and

~P = ~E � ~B =
CQ

r5
sin �' ; u =

1

2

�
Q2

r4
+
C2

r6
(3 cos2 � + 1)

�
: (4.7)

Thus
j~P j
u

=
2CQr sin �

r2Q2 + C2(3 cos2 � + 1)
6= 0 for r 6= 0. (4.8)

Since the �elds are static the conservation law eq.(4.3) continues to hold true, as
there is no motion of charges and for any closed surface containing the spherical
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conductor we have I
S

d~S: ~P = 0: (4.9)

But nothing is in motion! In view of these results we must investigate whether
the existence of superluminal UPWs solutions of ME is compatible or not with the
Principle of Relativity. We analyze this question in detail in the next section.

To end this section we recall that in section 2.19 of his book Stratton[19] presents
a discussion of the Poynting vector and energy transfer which essentially agrees with
the view presented above. Indeed he �nished that section with the words: \By this
standard there is every reason to retain the Poyinting-Heaviside viewpoint until a
clash with new experimental evidence shall call for its revision."(�)

5 Superluminal Solutions of Maxwell Equations

and the Principle of Relativity

5In the previous chapters we predicted that it is possible to launch in free space,
through plane radiators6 FAASEXWs7 whose peaks propagate with superluminal
velocity. It is also know that it is possible to have signals with superluminal group
velocities in dispersive media(51�53) . We emphasize that these two kinds of super-
luminality do not imply in any breakdown of the Principle of Relativity (PR) since
the method with which these waves are generated implies that pratically8 they have

4(�)Thanks are due to the referee for calling our attention to this point.
5Note added: this section has been rewritten and new references have been added
6Note added: after the publication of the present paper two recent experiments have been

done where FAASEXWs have been produced, both in the optical range (P. Saari and K. Reivelt,
Evidence of X-Shaped Propagation-Invariant Localized Light Waves, Phys. Rev. Lett. 79,
4135-4138 (1997) and in the microwave range (D. Mugnai, A. Ranfagni and R. Ruggieri, Ob-
servation of Superluminal Wave Propagation, Phys. Rev. Lett. 84, 4830-4834 (2000)). A dis-
cussion of the last experiment can be found in W. A. Rodrigues, Jr., A. L. Xavier and D. S.
Thober, Causal Explanation of Observed Superluminal Behavior of Microwaves inin Free Space,
http://arXiv.org/abs/physics/0012032

7It is possible also to launch �nite aperture approximations for other superluminal solutions of
the ME.

8We recall that theoretically, waves with �nite frequency spectra have no fronts. Indeed, as it is
well known from Fourier theory, these waves are acausal.We think that these waves cannot represent
real physical phenomena, and urge mathematicians to develope new mathematical methods for
dealing with this problem.
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fronts, which always move with the velocity of light. In this section we want to give
a rigorous presentation of the PR and a proof that if it would be possible to gen-
erate a �nite energy superluminal UPW (FESUPW)at a given Cauchy surface this
would imply in a breakdown of the PR9. Before the discovering of the existence of
superluminal solutions to all relativistic wave equations, many papers on tachyons
(hypothetical particles that travel faster than light) appeared in the literature. Some
authors, like, e.g., Recami[65] argues that due their particular dynamics, tachyons
do not violate the PR. We show also in this Chapter that this claim is non sequitur.

5.1 Formulation of the PR

We already de�ned Minkowski spacetime as the triple hM; g;Di, where M ' R4; g
is a Lorentzian metric and D is the Levi-Civita connection of g.

Consider now GM , the group of all di�eomorphisms of M , called the manifold
mapping group. Let T be a geometrical object de�ned in A � M . The di�eomor-
phism h 2 GM induces a deforming mapping h� : T 7! h�T = �T such that:

(i) If f :M � A! R, then h�f = f Æ h�1 : h(A)!R
(ii) If T 2 sec T (r;s)(A) � secT(M), where T (r;s)(A) is the sub-bundle of tensors of

type (r; s) of the tensor bundle T(M), then

(h�T)he(h�!1; : : : ; h�!r; h�X1; : : : ; h�Xs)

= Te(!1; : : : ; !r; X1; : : : ; Xs) (4.10)

8Xi 2 TeA; i = 1; : : : ; s, 8!j 2 T �eA; j = 1; : : : ; r, 8e 2 A.
(iii) If D is the Levi-Civita connection and X; Y 2 sec TM , then

(h�Dh�Xh�Y )heh�f = (DXY )ef 8e 2M: (4.11)

If ff� = @=@x�g is a coordinate basis for TA and f�� = dx�g is the corresponding
dual basis for T �A and if

T = T �1:::�r
�1:::�s �

�1 
 : : :
 ��s 
 f�1 
 : : :
 f�r ; (4.12)
9Of course, as already discussed a FESUPW cannot be a solution of ME. So, to proceed in

our exercise, we suppose in what follows that electromagnetic �eld con�gurations (in particular,
waves) are solutions of a generalized Maxwell equation (GME)|possibly a non linear one|and
that the GME is Lorentz invariant in the sense explained below. We are not going to speculate
here on the nature of the GME that would produce such solitons solutions.
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then

h�T = [T �1:::�r
�1:::�s

Æ h�1]h���1 
 : : :
 h��
�s 
 h�f�1 
 : : :
 h�f�r : (4.13)

Suppose now that A and h(A) can be covered by the local chart (U; �) of the maximal
atlas of M , and A � U; h(A) � U . Let hx�i be the coordinate functions associated
with (U; �). The mapping

x
0� = x� Æ h�1 : h(U)!R (4.14)

de�nes a coordinate transformation hx�i 7! hx0�i if h(U) � A [ h(A). Indeed hx0�i
are the coordinate functions associated with the local chart (V; ') where h(U) � V
and U \ V 6= �. Now, since it is well known that under the above conditions
h�@=@x

� � @=@x
0� and h�dx

� � dx
0�, eqs.(4.13) and (4.14) imply that

(h�T)hx0�i(he) = Thx�i(e); (4.15)

where Thx�i(e) means the components of T in the chart hx�i at the event e 2 M ,
i.e., Thx�i(e) = T �1:::�r

�1:::�s
(x�(e)) and where �T

0�1:::�r
�1:::�s

(x
0�(he)) are the components of

�T = h�T in the basis fh�@=@x� = @=@x
0�g, fh�dx� = dx

0�g, at the point h(e).
Then eq.(4.15) reads

�T
0�1:::�r
�1:::�s (x

0�(he)) = T �1:::�r
�1:::�s (x

�(e)); (4.16)

or using eq.(4.14)

�T
0�1:::�r
�1:::�s

(x
0�(e)) = (��1)�1�1 : : :�

�s
�sT

0�1:::�r
�1:::�s

(x
0�(h�1e)); (4.17)

where ��
� = @x

0�=@x�, etc.
In section 2.1 we introduce the concept of inertial reference frames I 2 sec TU ,

U �M by
g(I; I) = 1 and DI = 0: (4.18)

A general frame Z satis�es g(Z;Z) = 1, with DZ 6= 0. If � = g(Z; ) 2 sec T �U , it
holds

(D�)e = ae 
 �e + �e + !e +
1

3
�ehe; e 2 U � M; (4.19)

where a = g(A; ), A = DZZ is the acceleration and where !e is the rotation tensor,
�e is the shear tensor, �e is the expansion tensor and he = gjHe

where

TeM = [Ze]� [He]: (4.20)
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He is the rest space of an instantaneous observer at e, de�ned by the pair (e; Ze).
Also he(X; Y ) = ge(pX; pY ), 8X; Y 2 TeM and p : TeM ! He. (For the explicit
form of !; �; �, see(60;61) ). From eqs.(4.18) and (4.19) we see that an inertial reference
frame has no acceleration, no rotation, no shear and no expansion.

We introduce also in section 2.1 the concept of a (nacs/I). A (nacs/I) hx�i is said
to be in the Lorentz gauge if x�, � = 0; 1; 2; 3 are the usual Lorentz coordinates and
I = @=@x0 2 sec TM . We recall that it is a theorem that putting I = e0 = @=@x0,
there exist three other �elds ei 2 sec TM such that g(ei; ei) = �1; i = 1; 2; 3, and
ei = @=@xi. A moving frame for x 2 M is an orthonormal basis for TxM . Let
� : R � I 3 t 7! �(t) 2 M be a timelike curve. A moving system for all points
x 2 �(t) is called a comoving frame for �:

Now, let hx�i be Lorentz coordinate functions as above. We say that l 2 GM is
a Poincar�e mapping10 if and only if

x
0�(e) = ��

�x�(e) + a�; (4.21)

where ��
� 2 L"+ is a Lorentz transformation and a� are the components of a constant

vector.When a� = 0, eq.(4.21) is called a special orthochronous Lorentz mapping.
For abuse of notation we denote the subset f`g of GM such that eq.(4.21) holds true
also by P � GM .

When hx�i are Lorentz coordinate functions, hx0�i are also Lorentz coordinate
functions. In this case we denote

e� = @=@x�; e0� = @=@x
0�; 
� = dx�; 
0� = dx

0� ; (4.22)

when ` 2 P � GM we say that `�T is the Lorentz deformed version of T.
Let h 2 GM . If for a geometrical object T we have

h�T = T; (4.23)

then h is said to be a symmetry of T and the set of all fh 2 GMg such that eq.(4.23)
holds is said to be the symmetry group of T. We can immediately verify that for
` 2 P � GM

`�g = g; `�D = D; (4.24)

i.e., the Poincar�e group (and in particular its subgroup L"+) is a symmetry group of
g and D.

10The set of all Poincar�e mappings de�ne the Poincar�e group (P), which is the semi-direct

product of L"+ with the translation group, i.e., P = L
"
+ � T . The set of all particular Poincar�e

mappings such that a� = 0 de�ne the special orthochronous Lorentz group.
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In[62] a physical theory � is characterized by:
(i) the theory of a certain \species of structure" in the sense of Boubarki[63] ;
(ii) its physical interpretation;
(iii) its present meaning and present applications.
We recall that in the mathematical exposition of a given physical theory � , the

postulates or basic axioms are presented as de�nitions. Such de�nitions mean that
the physical phenomena described by � behave in a certain way. Then, the de�nitions
require more motivation than the pure mathematical de�nitions. We call coordina-
tive de�nitions the physical de�nitions, a term introduced by Reichenbach[64]. It is
necessary also to make clear that completely convincing and genuine motivations for
the coordinative de�nitions cannot be given, since they refer to nature as a whole
and to the physical theory as a whole.

The theoretical approach to physics behind (i), (ii) and (iii) above is then to
admit the mathematical concepts of the species of structure de�ning � as primitives,
and de�ne coordinatively the observation entities from them. Reichenbach assumes
that \physical knowledge is characterized by the fact that concepts are not only
de�ned by other concepts, but are also coordinated to real objects". However, in
our approach, each physical theory, when characterized as a species of structure,
contains some implicit geometric objects, like some of the reference frame �elds
de�ned above, that cannot in general be coordinated to real objects. Indeed it
would be an absurd to suppose that all the in�nity of IRF that exist in M must
have a material support.

We de�ne a spacetime theory as a theory of a species of structure such that, if
Mod � is the class of models of � , then each � 2 Mod � contains a substructure
called spacetime (ST). More precisely, we have

� = (ST;T1 : : :Tmg ; (4.25)

where ST can be a very general structure[62] . For what follows we suppose that
ST = M = (M; g;D), i.e. that ST is Minkowski spacetime. The Ti, i = 1; : : : ; m
are (explicit) geometrical objects de�ned in U �M characterizing the physical �elds
and particle trajectories that cannot be geometrized in �. Here, to be geometrizable
means to be a metric �eld or a connection on M or objects derived from these
concepts as, e.g., the Riemann tensor or the torsion tensor.

The reference frame �elds will be called the implicit geometrical objects of � ,
since they are mathematical objects that do not necessarily correspond to properties
of a physical system described by � .
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Now, with the Cli�ord bundle formalism we can formulate in C̀ (M) all modern
physical theories (see section 2) including Einstein's gravitational theory[6] . We
introduce now the Lorentz-Maxwell electrodynamics (LME) in C̀ (M) as a theory of
a species of structure. We say that LME has as model

�LME = hM; g;D; F; J; f'i; mi; eigi; (4.26)

where (M; g;D) is Minkowski spacetime, f'i; mi; eig, i = 1; 2; : : : ; N is the set of
all charged particles, mi and ei being the masses and charges of the particles and
'i : R � I !M being the world lines of the particles characterized by the fact that
if 'i� 2 sec TM is the velocity vector, then �'i = g('i�; ) 2 sec �1(M) � sec C̀ (M)
and �'i: �'i = 1. F 2 sec �2(M) � sec C̀ (M) is the electromagnetic �eld and J 2
sec �1(M) � sec C̀ (M) is the current density. The proper axioms of the theory are

@F = J
miD'i� �'i = ei �'i � F (4.27)

From a mathematical point of view it is a trivial result that �LME has the
following property: If h 2 GM and if eqs.(4.27) have a solution hF; J; ('i; mi; ei)i in
U � M then hh�F; h�J; (h�'i; mi; ei)i is also a solution of eqs.(4.27) in h(U). Since
the result is true for any h 2 GM it is true for ` 2 P � GM , i.e., for any Poincar�e
mapping.

We must now make it clear that hF; J; f'i; mi; eigi which is a solution of eq.(4.27)
in U can be obtained only by imposing mathematical boundary conditions which we
denote by BU . The solution will be realizable in nature if and only if the mathe-
matical boundary conditions can be physically realizable. This is indeed a nontrivial
point for in particular it says to us that even if hh�F; h�J; fh�'i; mi; eigi can be a so-
lution of eqs.(4.27) with mathematical boundary conditions Bh(U), it may happen
that Bh(U) cannot be physically realizable in nature. The following statement, de-
noted PR1, is usually presented

(62) as the Principle of (Special) Relativity in active
form:

PR1: Let l2P � GM . If for a physical theory � and � 2 Mod � ,
� = hM; g;D;T1; : : : ;Tmi is a possible physical phenomenon, then
`�� = hM; g;D; l�T1; : : : ; l�Tmi is also a possible physical phenomenon.

It is clear that hidden in PR1 is the assumption that the boundary conditions that
determine `�� are physically realizable. Before we continue we introduce the state-
ment denoted PR2, known as the Principle of (Special) Relativity in passive form

[62]

:
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PR2:\All inertial reference frames are physically equivalent or indistinguishable".

We now give a precise mathematical meaning to the above statement.
Let � be a spacetime theory and let ST = hM; g;Di be a substructure of Mod �

representing spacetime. Let I 2 secTU and I 0 2 sec TV , U; V �M , be two inertial
reference frames. Let (U; �) and (V; ') be two Lorentz charts of the maximal atlas
of M that are naturally adapted respectively to I and I 0. If hx�i and hx0�i are the
coordinate functions associated with (U; �) and (V; '), we have I = @=@x0; I 0 =
@=@x

00.

De�nition: Two inertial reference frames I and I 0 as above are said to be phys-
ically equivalent according to � if and only if the following conditions are satis�ed:

(i) There exists ` such that GM � P 3 ` : U ! `(U) � V; x
0� = x� Æ `�1 such

that I 0 = `�I
Let � 2 Mod� , � = hM; g;D;T1; : : :Tmi, such that g and D are de�ned over

all M and Ti 2 sec C̀ (U) � sec C̀ (M). Let the substructure o = hg;D;T1; : : :Tmi,
be such that it solves a set of di�erential equations in �(U) � R4 with a given set
of boundary conditions denoted bohx

�i, which we write as

D�
hx�i(ohx�i)e = 0 ; bohx

�i ; e 2 U (4.28)

Then, if all conditons above hold true we must have:
(ii) If � 2 Mod � , `�� 2 Mod � , then necessarily

`�� = hM; g;D; `�T1; : : : `�Tmi (4.29)

is de�ned in `(U) � V and calling `�o � fg;D; `�T1; : : : ; `�Tmg we must have
D�
hx

0�i
(`�ohx0�i)j`e = 0 ; b`�ohx

0�i `e 2 `(U) � V: (4.30)

In eqs.(4.28) and (4.30) D�
hx�i and D�

hx0�i
mean � = 1; 2; : : : ; m sets of di�erential

equations in R4. The system of di�erential equations (4.30) must have the same

functional form as the system of di�erential equations (4.28) and b`�ohx
0�i must be

relative to hx0�i the same as bohx�i is relative to hx�i and if bohx
�i is physically realiz-

able then b`�ohx
0�i must also be physically realizable. We say under these conditions

that I � I 0 and that `�o is the Lorentz deformed version of the phenomena described
by o.

Since in the above de�nition `�� = hM; g;D; `�T1; : : : ; `�Tmi, it follows that
when I � I 0, then `�g = g; `�D = D (as we already know) and this means that the
spacetime structure does not give a preferred status to I or I 0 according to � .
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6 Genuine superluminal motions break PR1 and

PR2

We are now able to prove the statement presented at the beginning of this section,
that the if it would be possible to produce a FESUPW at a given Cauchy surface
(which is a solution of aGME), then this would imply in a breakdown of the Principle
of Relativity in both its active (PR1) and passive (PR2) versions.

Let ` 2 P � GM and let F , �F 2 sec �2(M) � sec C̀ (M). Let �F = `�F =
R �FR�1, where �F (e) = (1=2)F��(x

Æ(`�1e))
�
� , e 2 M , and where R 2 sec Spin+(1; 3) �
sec C̀ (M) is a Poincar�e mapping, such that 


0� = R
�R�1 = ��
�


�;��
� 2 L"+. Let

hx�i and hx0�i be Lorentz coordinate functions related as in eq.(4.21), such that

� = dx�, 


0� = dx
0� and x

0� = x� Æ `�1. These coordinate functions are related
with to inertial reference frames I, I 0 2 sec TM ; hx�i is a (nacs/I) and hx0�i is a
(nacs/I 0). We write

F (e) =
1

2
F��(x

Æ(e))
�
� ;

F (e) =
1

2
F 0��(x

0Æ(e))

0�


0�; (4.31)

�F (e) =
1

2
�F��(x

Æ(e))
�
�;

�F (e) =
1

2
�F 0��(x

0Æ(e))

0�


0� (4.32)

From the equations above we get that

F 0��(x
0Æ(e)) = (��1)��(�

�1)��F��(x
Æ(e)): (4.33)

and also
�F��(x

Æ(e)) = ��
��

�
�F��(x

Æ(`�1e)) (4.34)

Now, suppose that F is a �nite energy superluminal UPW solution of ME that
can be produced in a given Cauchy surface (realized by some hypothetical device) in
a given inertial frame I with hx�i as (nacs/I), and suppose that it is traveling with
speed c1 > 1 in the negative z-direction, i.e., vF = v�
� = (c21 � 1)�1=2(1; 0; 0;�c1).
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It will then travel to the future in spacetime, according to the observers in I. The
relations between F and �F implies that

v �F = v�
0� = (c21 � 1)�1=2(1; 0; 0;�c1);

i.e., �F travels relatively to I 0 in the same way as F travels with respect to I.
On the other hand, there exists `0 2 L"+ � P such that `0�F = F 0 = RFR�1

will be a solution of Maxwell equations and such that if the velocity 1-form of F
is vF = (c21 � 1)�1=2(1; 0; 0;�c1) according to I, then the velocity 1-form of F 0 is
vF 0 = (c021 � 1)�1=2(�1; 0; 0;�c01) according to I, with c01 > 1, i.e., vF 0 is pointing to
the past.

Now, the energy density carried by F 0 is positive according to the observers in
the I and I 0 frames (as follows directly from eq.(B.35)). Is the energy of F 0 (if it is
an allowed physical phenomenon) according to the observers at rest in the I frame
positive or negative? To �nd an answer recall �rst that calculation of the energy of
an arbitrary electromagnetic �eld con�guration F 2 sec �2(M) � sec C̀ (M) is given
by the equation

EF = P 0
F =

Z
�

T 0�
F d�� (4.35)

where T 0�
F

= T 0
F � 
� (see eq.(B.35)) is calculated with F, � is a spacelike hypersur-

face and d�� = n�d� with n�, � = 0; 1; 2; 3 being the components of a time like
vector in the basis f@=@x�g of TM . Next, take � as a constant time space like
hypersurface.The parametric equation of � is

n�x
� � � = 0 (4.36)

where � is an invariant parameter measuring the \distance" of � in relation to some
arbitrarily chosen origin. In this case d�� ! d�0 = n0dx

1dx2dx3. The usual orienta-
tion given by the observers of the I frame to � is n� = (1; 0; 0; 0). This choice de�nes
the absolute future of the observers at rest in the I frame and reduces eq.(4.36) to
x0 = � . With this convention even if F 0 is going to the past (according to its velocity
vector) we have EF 0 > 0! On the other hand, since F 0 has been obtained from F
through an active Lorentz transformation we expect that the relation between EF 0

and EF (> 0) will be given by the same active Lorentz transformation|and in this
case, as it is well known(65) we have EF 0 < 0 and we have a contradiction with the
previous conclusion.

At �rst sight it seems that it would be possible to overcome this contradiction
if the observers in the I frame take the orientation of � when dealing with waves
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that travel to the past as n� = (�1; 0; 0; 0). With this choice the observers at I are
sending negative energy to the past and as a result the device that produced �F will
have more energy after the launching of �F then it had before. It will be then a kind
of perpetual motion machine of �rst kind.

From this discussion we arrive at the conclusion that to assume the validity
of PR1 is to assume: (i) or the physical possibility of sending to the past waves
carrying positive energy density or (ii) to have a perpetual motion machine of the
�rst kind. Both possibilities seems to us an impossible task11. The unique solution
for our dilema is to admit that there do no exist physically realizable boundary
conditions that would allow the observers in I to launch F 0 in spacetime and such
that it traveled to its own past. It follows that the only reasonable thing we can
state is that we have a breakdown of PR1.

We now show |under the condition that superluminal waves exist| that there
is also a breakdown of PR2, i.e., that it is not true that all inertial frames are
physically equivalent. Suppose we have two inertial frames I and I 0 as above, i.e.,
I = @=@x0, I 0 = @=@x

00, which hx�i and hx0�i related by a Poincar�e transformation
[eq.(4.21)]

Suppose that F0 is a superluminal UPW12 which can be launched in I with
velocity 1-form vF0 = (c22 � 1)�1=2(1; 0; 0; c2); c2 > 1 (Fig.(10) and suppose also that
�F is a superluminal UPW produced in I 0 (at t0 = 0) and with velocity 1-form relative
to hx0�i given by v �F = v

0�
0� and

v �F =

�
1p
c21 � 1

; 0; 0;� c1p
c21 � 1

�
; c1 > 1: (4.37)

f F0 and �F are related as above we would have (see Figure 10) that F0, which has
positive energy and is and is traveling to the future according to I, can be sent
to the past of the observers at rest in the I 0 frame. Also, �F which has positive
energy and is traveling to the future according to I 0, can be sent to the past of the
observers at rest in the I frame. Obviously, this may be not impossible, but surely
if this would be the case, the world would be a very crazy and dangerous place, for a

11This statement will eventually infuriate some relativistics that are even proposiging that travels
in time with the aid of \time machines" are possible. Our comment here is that it is time to
distinguish pure mathematics from reality, both from �ction and moreover to insist in the teaching
of Aristoteles logic for young childreen again.

12Oberve that it is very hard to draw a spacetime diagram representing the launching of SEWXs.
Due to this fact in Figure 10 the world lines associated with Fand �F refer to the motion of the
peak of these waves which are taken to birth respectively at t = 0 and t0 = 0.
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situation|known as the Tolman-Regge paradox| would be possible. The paradox
is the following.

Suppose that two observers, at rest respectively at the I and I 0 (the ones such
that the world lines are the axes t and t0 shown in Figure 10 decide at the event
de�ned by the crossing of their world lines to realize the following experiment: They
agree that if I 0 reiceves from I a superluminal signal (through the UPW F0) until
event o0, he will destroy I laboratory using the superluminal UPW �F . As can
be seen in Figure 10 (and easily veri�ed through an elementary calculation) the
destruction of I laboratory would occur at the event td < te. This is clearly a logical
paradox. We think that if some day superluminal waves could be produced, they
will immediately identify a preferred inertial Lorentz frame which would provide
a universal time order. Indeed, in any other inertial Lorentz frame moving with
respect to the preferred frame, it will be impossible to launch any superluminal
UPW that would travel to the past of the observers at rest in the preferred frame,
for otherwise we would have a contradiction. Then, since moving observers relative
to the preferred frame are not able to produce superluminal waves with arbitrary
velocities, they will realize a breakdown of PR2, being moroevor able to calculate
their absolute velocity.

Let I 2 sec TM be that fundamental frame. If I 0 is moving with speed V relative
to I, i.e.,

I 0 =
1p

1� V 2

@

@t
+

Vp
1� V 2

@

@z
; (4.38)

then, if observers in I 0 are equipped with a generator of superluminal UPWs and
if they prepare their apparatus in order to send such waves with di�erent velocity
1-forms in all possible directions in spacetime, they will �nd a particular velocity
1-form in a given spacetime direction in which the device stops working. A simple
calculation yields then, for the observers in I 0, the value of V !

In[65] Recami argued that the Principle of Relativity continues to hold true even
if superluminal phenomena |realized by the possible existence of tachyons| exist
in nature. In this theory of tachyons there exists, of course, a situation similar to
the one described above for the superluminal UPWs. According to Recami's view
PR2 is valid because the observers at I must interpret a tachyon sent by an observer
at I 0 that follows a worldline like the one of the �F showed in Figure 10 ( and which
by the dynamics of tachyons has according to I negative energy) as an anti-tachyon
carrying positive energy and going into the future according to him. In his theory
of tachyons Recami was able to show that the dynamics of tachyons implies that
no detector at rest in I frame can detect a tachyon sent by I 0 with velocity 1-form
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Figure 10: Illustration of the Tolman-Regge paradox.

given by eq.(4.38).13 Thus, he claimed that PR2 is true.
At �rst sight the argument seems good, but it is at least incomplete. Indeed,

a detector in I does not need to be at rest in I14. We can imagine a detector in
periodic motion in I which could absorb the tachyon generated and launched by
an observer living in I 0 if this was indeed possible. It is enough for the detector to
have relative to I the speed V of the I 0 frame in the appropriate direction at the
moment of absorption. This simple argument and the above discussion concerning
the energy of hypothetical superluminal UPWs with velocity vector pointing to the
past show that there is no salvation for PR2 (and for PR1) if superluminal motion
exists in nature.

The attentive reader at this point probably has the following question in his/her
mind: How could the author starts with Minkowski spacetime, with equations car-
rying the Lorentz symmetry and yet arrive at the conclusion that PR1 and PR2 do
not hold?

The reason is that the Lorentzian structure of hM; g;Di can be seen to exist
directly from the Newtonian spacetime structure as proved in[66] . In that paper
it is shown that even if P is not a symmetry group of Newtonian dynamics it is a
symmetry group of the only possible coherent formulation of Lorentz-Maxwell elec-
trodynamic theory compatible with experimental results that is possible to formulate
in the Newtonian spacetime.

We �nish calling to the reader's attention that even if the evidence is not com-
pletely convincing, there are some experiments reported in the literature which

13Of course, also I 0 will interpret a tachyon following a world line as the one followed by F0

as an antitachyon, and by the same argument it could not even be absorved, showing that no
Tolman-Regge situation can be generated.

14The same is true for detectors that could be used by I 0:
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suggest also a breakdown of PR2 for the roto-translational motion of solid bodies.
A discussion and references can be found in[67] .

7 Conclusions

In this paper we presented a uni�ed theory showing that the homogeneous wave
equation, the Klein-Gordon equation, Maxwell equations and the Dirac and Weyl
equations have solutions with the form of undistorted progressive waves (UPWs) of
arbitrary speeds 0 � v <1.

We present also the results of an experiment which con�rms that �nite aperture
approximations to a Bessel pulse and to an X-wave in water move as predicted by
our theory, i.e., the peak of Bessel pulse moves with speed less than cs and the peak
of the X-wave moves with speed greater than cs, cs being the sound velocity in
water.

We exhibit also some subluminal and superluminal solutions of Maxwell equa-
tions. We showed that subluminal solutions can in principle be used to model purely
electromagnetic particles. A detailed discussion is given about the superluminal
electromagnetic X-wave solution of Maxwell equations and we showed that it can in
principle be launched with available technology15. Here a point must be clear, the
FAA X-waves, both acoustic and electromagnetic are real signals wich for any time
have compact support in the space domain. Then, they have well de�ned fronts and
the front velocity is always the maximum speed (the speed paramenter appearing in
the respective wave equation). It is only the peak that travels at superluminal speed.
The phenomenon cannot endures for ever, it last until the peak catches the front.
This happens inside the depth of the �eld distance. Only the existence of genuine
superluminal waves carrying energy would imply in the breakdown of the Principle
of Relativity. If waves of this kind exists in nature is not known until now.(�) We
observe that besides its fundamental theoretical implications, the practical implica-
tions of the existence of UPWs solutions of the main �eld equations of theoretical
physics (and their �nite aperture realizations) are very important. This practical
importance ranges from applications in ultrasound medical imaging to the project

15Note added: As observed in footnote ... at two recent experiments (one in the optical and the
other in the microwave region) con�rms that prediction. See the references to these experiments
in the footnote...

15(�)It is important to recall that there exists the possibility of propagation of superluminal sig-
nals inside the hadronic matter. In this case the ingenious construction of Santilli's isominkowskian
spaces (see[68�73]) is useful.
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of electromagnetic bullets and new communication devices[33]. Also we would like to
conjecture that the existence of subluminal and superluminal solutions of the Weyl
equation may be important to solve some of the mysteries associated with neutri-
nos. Indeed, if neutrinos can be produced in subluminal or superluminal modes |
see[75;76] for some experimental evidence concerning superluminal neutrinos | they
can eventually escape detection on earth after leaving the sun. Moreover, for neu-
trinos in a subluminal or superluminal mode it would be possible to de�ne a kind of
\e�ective mass". Recently some cosmological evidences that neutrinos have a non-
vanishing mass have been discussed by e.g. Primack et al[77]. One such \e�ective
mass" could be responsible for those cosmological evidences, and in such a way that
we can still have a left-handed neutrino since it would satisfy the Weyl equation.
We discuss more this issue in another publication.
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A Solutions of the (Scalar) Homogeneous Wave

Equation and Their Finite Aperture Realiza-

tions

In this appendix we �rst recall brie
y some well known results concerning the fun-
damental (Green's functions) and the general solutions of the (scalar) homogeneous
wave equation (HWE) and the theory of their �nite aperture approximation (FAA).
FAA is based on the Rayleigh-Sommerfeld formulation of di�raction (RSFD) by a
plane screen. We show that under certain conditions the RSFD is useful for de-

46



signing physical devices to launch waves that travel with the characteristic velocity
in a homogeneous medium (i.e., the speed c that appears in the wave equation).
More important, RSFD is also useful for projecting physical devices to launch some
of the subluminal and superluminal solutions of the HWE (i.e., waves that propa-
gate in an homogeneous medium with speeds respectively less and greater than c)
that we present in this appendix. We use units such that c = 1 and ~ = 1, where
c is the so called velocity of light in vacuum and ~ is Planck's constant divided by 2�.

A.1 Green's Functions and the General Solution of the
(Scalar) HWE

Let � in what follows be a complex function in Minkowski spacetime M :

� :M 3 x 7! �(x) 2 IC : (A.1)

The inhomogeneous wave equation for � is

�� =

�
@2

@t2
�r2

�
� = 4�� ; (A.2)

where � is a complex function in Minkowski spacetime. We de�ne a two-point
Green's function for the wave equation (A.2) as a solution of

�G(x� x0) = 4�Æ(x� x0) : (A.3)

As it is well known, the fundamental solutions of (A.3) are:

Retarded Green's function: GR(x� x0) = 2H(x� x0)Æ[(x� x0)2]; (A.4a)
Advanced Green's function: GA(x� x0) = 2H[�(x� x0)]Æ[(x� x0)2]; (A.4b)

where (x � x0)2 � (x0 � x
00)2 � (~x � ~x0)2, H(x) = H(x0) is the step function and

x0 = t; x
00 = t0.

We can rewrite eqs.(A.4) as (R = j~x� ~x0j):

GR(x
0 � x

00; ~x� ~x0) =
1

R
Æ(x�0 � x0 +R) ; (A.4c)

GA(x
0 � x

00; ~x� ~x0) =
1

R
Æ(x�0 � x0 � R) : (A.4d)
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We de�ne the Schwinger function by

GS = GR �GA = 2"(x)Æ(x2); "(x) = H(x)�H(�x) : (A.5)

It has the properties

2GS = 0; GS(x) = �GS(�x); GS(x) = 0 if x2 < 0 ; (A.6a)

GS(0; ~x) = 0;
@GS

@xi

����
xi=0

= 0;
@Gs

@x0

����
x0=0

= Æ(~x) : (A.6b)

For the reader who is familiar with the material presented in Appendix B, we
observe that these equations can be rewritten in a very elegant way in C`C(M). (If
you haven't read Appendix B, go to eq.(A.80).) We haveZ

�

?dGS(x� y) = �
Z
�

dGS(x� y)
5 = 1; if y 2 �; (A.7)

where � is any spacelike surface. Then if f 2 sec IC 
V0(M) � sec C`C(M) is any
function de�ned on a spacelike surface �, we can writeZ

�

[?dGS(x� y)]f(x) = �
Z
dGs(x� y)f(x)
5 = f(y) : (A.8)

Eqs.(A.7) and (A.8) appear written in textbooks on �eld theory asZ
�

@�GS(x� y)d��(x) = 1 ;

Z
�

f(x)@�GS(x� y)d��(x) = f(y) : (A.8')

We now express the general solution of eq.(A.2), including the initial conditions, in
a bounded constant time spacelike hypersurface � characterized by 
1 ^ 
2 ^ 
3 in
terms of GR. We write the solution in the standard vector notation. Let the constant
time hypersurface � be the volume V � IR3 and @V = S its boundary. We have,

�(t; ~x) =

Z t+

0

dt0
Z Z Z

V

dv0GR(t� t0; ~x� ~x0)�(t0; ~x0)

+
1

4�

Z Z Z
V

dv0
�
GRjt0=0

@�

@t0
(t0; ~x0)jt0=0 � �(t0; ~x0)jt0=0

@

@t0
GRjt0=0

�
+

1

4�

Z t+

0

dt0
Z Z

S

d~S 0:(GRgrad
0�� �grad0GR); (A.9)
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where grad0 means that the gradient operator acts on ~x0, and where t+ means that
the integral over t0 must end on t0 = t+" in order to avoid ending the integral exactly
at the peak of the Æ-function. The �rst term in eq.(A.9) represents the e�ects of
the sources, the second term represents the e�ects of the initial conditions (Cauchy
problem) and the third term represents the e�ects of the boundary conditions on
the space boundaries @V = S.This term is essential for the theory of di�raction and
in particular for the RSFD.

Cauchy problem: Suppose that �(0; ~x) and
@

@t
�(t; ~x)jt=0 are known at every

point in space, and assume that there are no sources present, i.e., � = 0. Then the
solution of the HWE becomes

�(t; ~x) =
1

4�

Z Z Z
dv0

�
GRjt0=0

@

@t
�(t0; ~x0)jt0=0 � @

@t
GRjt0=0�(0; ~x

0)

�
: (A.10)

The integration extends over all space and we explicitly assume that the third term
in eq.(A.9) vanishes at in�nity.

We can give an intrinsic formulation of eq.(A.10). Let x 2 �, where � is a
spacelike surface without boundary. Then the solution of the HWE can be written

�(x) =
1

4�

Z
�

fGS(x� x0)[?d�(x0)]� [?dGS(x� x0)]�(x0)g
(A.11)

=
1

4�

Z
�

d��(x)[GS(x� x0)@��(x
0)� @�GS(x� x0)�(x0)]

where GS is the Schwinger function [see eqs.(A.7, A.8)]. �(x) given by eq.(A.11)
corresponds to \causal propagation" in the usual Einstein sense, i.e., �(x) is in-

uenced only by points of � which lie in the backward (forward) light cone of x0,
depending on whether x is \later" (\earlier") than �.

A.2 Huygen's Principle; the Kirchho� and Rayleigh-Sommerfeld
Formulations of Di�raction by a Plane Screen[79]

Huygen's principle is essential for understanding Kirchho�'s formulation and the
Rayleigh-Sommerfeld formulation (RSF) of di�raction by a plane screen. Consider
again the general solution [eq.(A.9)] of the HWE which is non-null in the surface
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S = @V and suppose also that �(0; ~x) and
@

@t
�(t; ~x)jt=0 are null for all ~x 2 V . Then

eq.(A.9) gives

�(t; ~x) =
1

4�

Z Z
S

d~S 0:

"
1

R
grad0�(t0; ~x0) +

~R

R3
�(t0; ~x0) +

~R

R2

@

@t0
�(t0; ~x0)

#
t0=t�R

:

(A.12)
From eq.(A.12) we see that if S is along a wavefront and the rest of it is at in�nity
or where � is zero, we can say that the �eld value � at (t; ~x) is caused by the �eld
� in the wave front at time (t�R) earlier. This is Huygen's principle.
This equation can also be used to prove that any �eld con�guration of compact
support (at t = 0) is such that the front travels with a speed that is always not
greater than the maximum speed ( the speed paramenter that appears in the wave
equation). We are not giving the proof here. The interested reader may consult[1]:

Kirchho�'s theory: Now, consider a screen with a hole like in Fig.11.

Figure 11: Di�raction from a �nite aperture.

Suppose that we have an exact solution of the HWE that can be written as

�(t; ~x) = F (~x)ei!t; (A.13)

where we de�ne also
! = k (A.14)

and k is not necessarily the propagation vector (see bellow). We want to �nd the
�eld at ~x 2 V , with @V = S1 + S2 (Fig.11), with � = 0 8~x 2 V . Kirchho� proposed
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to use eq.(A.12) to give an approximate solution for the problem. Under the so
called Sommerfeld radiation condition,

lim
r!1

r

�
@F

@n
� ikF

�
= 0; (A.15)

where r = j~rj; ~r = ~x0 � ~x, ~x0 being a point of S2, the integral in eq.(A.12) is null
over S2. Then, we get

F (~x) =
1

4�

Z Z
S1

dS 0
�
@F

@n
GK � F

@GK

@n

�
; (A.16)

GK =
eikR

R
; R = j~x� ~x0j; ~x0 2 S1 : (A.17)

Now, the \source" is opaque, except for the aperture which is denoted by � in
Fig.11. It is reasonable to suppose that the major contribution to the integral arises
from points of S1 in the aperture � � S1. Kirchho� then proposed the conditions:

(i) Across �, the �elds F and @F=@n are exactly the same as they would be in
the absence of sources.

(ii) Over the portion of S1 that lies in the geometrical shadow of the screen the
�eld F and @F=@n are null.

Conditions (i) plus (ii) are called Kirchho� boundary conditions, and we end
with

FK(~x) =

Z Z
�

dS 0
�
@F

@n
GK � F

@

@n
GK

�
; (A.18)

where FK(~x) is the Kirchho� approximation to the problem. As is well known, FK
gives results that agree very well with experiments, if the dimensions of the aperture
are large compared with the wave length. Nevertheless, Kirchho�'s solution is in-
consistent, since under the hypothesis given by eq.(A.13), F (~x) becomes a solution
of the Helmholtz equation

r2F + !2F = 0 ; (A.19)

and as is well known it is illicit for this equation to impose simultaneously arbitrary
boundary conditions for both F and @F=@n.
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A further shortcoming of FK is that it fails to reproduce the assumed bound-
ary conditions when ~x 2 � � S1. To avoid such inconsistencies Sommerfeld pro-
posed to eliminate the necessity of imposing boundary conditions on both F and
@F=@n simultaneously. This gives the so called Rayleigh-Sommerfeld formulation of
di�raction by a plane screen (RSFD). RSFD is obtained as follows. Consider again
a solution of eq.(A.18) under Sommerfeld radiation condition [eq.(A.15)]

F (~x) =
1

4

Z Z
S1

�
@F

@n
GRS � F

@GRS

@n

�
dS 0; (A.20)

where now GRS is a Green function for eq.(A.19) di�erent from GK. GRS must
provide an exact solution of eq.(A.19) but we want in addition that GRS or @GRS=@n
vanish over the entire surface S1, since as we already said we cannot impose the
values of F and @F=@n simultaneously.

A solution for this problem is to take GRS as a \three-point function", i.e., as a
solution of

(r2 + !2)G�RS(~x; ~x
0; ~x00) = 4�Æ(~x� ~x0)� 4�Æ(~x� ~x00): (A.21)

We get

G�RS(~x; ~x
0; ~x00) =

eikR

R
� eikR

0

R0
; (A.22)

R = j~x� ~x0j; R0 = j~x� ~x00j; (A.23)

where ~x 2 S1 and ~x
0 = �~x00 are mirror image points relative to S1. This solution

gives G�RS

����
S1

= 0 and @G�RS=@n

����
S1

6= 0.

Another solution for our problem such that G+
RS

����
S1

6= 0 and @G+
RS=@n

����
S1

= 0 is

realized for G+
RS satisfying

(r2 + !2)G+
RS(~x; ~x

0; ~x00) = 4�Æ(~x� ~x0) + 4�Æ(~x� ~x00): (A.24)

Then

G+
RS(~x; ~x

0; ~x00) =
eikR

R
+
eikR

0

R0
; (A.25)

with R and R0 as in eq.(A.23).
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We now use G+
RS in eq.(A.25) and take S1 as being the z = 0 plane. In this case

~n = �bk, bk being the versor of the z direction, ~R = ~x� ~x0, ~R:~n = z0 � z cos(~n; ~R) =
(z0 � z)=R and we get

F (~x) = � 1

2�

Z Z
S1

dS 0F (x0; y0; 0)

"
ikz

eikR

R2
� eikR

R3
z

#
: (A.26)

A.3 FAA for Waves Satisfying �(t; ~x) = F (~x)e�i!t

The �nite aperture approximation to eq.(A.26) consists in integrating only over
� � S1, i.e., we suppose F (~x) = 0 8~x 2 (S1n�). Taking into account that

k = 2�=�; ! = k; (A.27)

we get

FFAA =
1

i�

Z Z
�

dS 0F (x0; y0; 0)
eikR

R2
z +

1

2�

Z Z
�

dS 0F (x0; y0; 0)
eikR

R3
z: (A.28)

In section A4 we show some subluminal and superluminal solutions of the HWE
and then discuss for which solutions the FAA is valid. We show that there are indeed
subluminal and superluminal solutions of the HWE for which (A.28) can be used.
Even more important, we describe in section 2 the results of recent experiments,
conducted by us, that con�rm the predictions of the theory for acoustic waves in
water.

A.4 Subluminal and Superluminal Solutions of the HWE

Consider the HWE (c = 1)

@2

@t2
��r2� = 0 : (A.20)

We now present some subluminal and superluminal solutions of eq.(A.20).[80]

Subluminal and Superluminal Spherical Bessel Beams. To introduce these beams we
de�ne the variables

�< = [x2 + y2 + 
2<(z � v<t)
2]1=2 ; (A.29a)
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< =
1p

1� v2<
; !2

< � k2< = 
2
< ; v< =

d!<
dk<

; (A.29b)

�> = [�x2 � y2 + 
2>(z � v>t)
2]1=2 ; (A.29c)


> =
1p

v2> � 1
; !2

> � k2> = �
2
> ; v> = d!>=dk> : (A.29d)

We can now easily verify that the functions �`m
< and �`m

> below are respectively
subluminal and superluminal solutions of the HWE (see example 3 below for how
to obtain these solutions). We have

�`m
p (t; ~x) = C` j`(
p�p)P

`
m(cos �)e

im�ei(!pt�kpz) (A.30)

where the index p =<; >, C` are constants, j` are the spherical Bessel functions,
P `
m are the Legendre functions and (r; �; ') are the usual spherical coordinates.

�`m
< [�`m

> ] has phase velocity (w<=k<) < 1 [(w>=k>) > 1] and the modulation
function j`(
<�<) [j`(
>�>)] moves with group velocity v< [v>], where 0 � v< < 1
[1 < v> <1]. Both �`m

< and �`m
> are undistorted progressive waves (UPWs). This

term has been introduced by Courant and Hilbert[1]; however they didn't suspect of
UPWs moving with speeds greater than c = 1. For use in the main text we write
the explicit form of �00

< and �00
> , which we denote simply by �< and �>:

�p(t; ~x) = C
sin(
p�p)

�p
ei(!pt�kpz); p =< or > : (A.31)

When v< = 0, we have �< ! �0,

�0(t; ~x) = C
sin
<r

r
ei
<t; r = (x2 + y2 + z2)1=2 : (A.32)

When v> =1, !> = 0 and �0
> ! �1,

�1(t; ~x) = C1
sinh �

�
ei
>z; � = (x2 + y2)1=2 : (A.33)

We observe that if our interpretation of phase and group velocities is correct,
then there must be a Lorentz frame where �< is at rest. It is trivial to verify that
in the coordinate chart hx0�i which is a (nacs/I 0), where I 0 = (1 � v2<)

�1=2@=@t +
(v<=

p
1� v2<)@=@z is a Lorentz frame moving with speed v< in the z direction rel-

ative to I = @=@t, �p goes in �0(t
0; ~x0) given by eq.(A.32) with t 7! t0, ~x 7! ~x0.
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Subluminal and Superluminal Bessel Beams. The solutions of the HWE in cylindrical
coordinates are well known[19]. Here we recall how these solutions are obtained in
order to present new subluminal and superluminal solutions of the HWE. In what
follows the cylindrical coordinate functions are denoted by (�; �; z), � = (x2+y2)1=2,
x = � cos �, y = � sin �. We write for �:

�(t; �; �; z) = f1(�)f2(�)f3(t; z) : (A.34)

Inserting (A.34) in (A.20) gives

�2
d2

d�2
f1 + �

d

d�
f1 + (B�2 � �2)f1 = 0; (A.35a)�

d2

d�2
+ �2

�
f2 = 0; (A.35b)�

d2

dt2
� @2

@z2
+B

�
f3 = 0. (A.35c)

In these equations B and � are separation constants. Since we want � to be periodic
in � we choose � = n an integer. For B we consider two cases:

(i) Subluminal Bessel solution, B = 
2
< > 0

In this case (A.35a) is a Bessel equation and we have

�<
Jn(t; �; �; z) = CnJn(�
<)e

i(k<z�w<t+n�); n = 0; 1; 2; : : : ; (A.36)

where Cn is a constant, Jn is the n-th order Bessel function and

!2
< � k2< = 
2

< : (A.37)

In[43] the �<
Jn

are called the nth-order non-di�racting Bessel beams(�).
Bessel beams are examples of undistorted progressive waves (UPWs). They are

\subluminal" waves. Indeed, the group velocity for each wave is

v< = d!<=dk< ; 0 < v< < 1 ; (A.38)

but the phase velocity of the wave is (!<=k<) > 1. That this interpretation is correct
follows from the results of the acoustic experiment described in section 2.

It is convenient for what follows to de�ne the variable �, called the axicon
angle[26],

k< = k< cos � ; 
< = k< sin � ; 0 < � < �=2 : (A.39)

15(�)The only di�erence is that k< is denoted by � =
p
!2
< �
2

< and !< is denoted by k0 =
!=c > 0. (We use units where c = 1).
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Then
k< = !< > 0 (A.40)

and eq.(A.36) can be rewritten as �<
An
� �<

Jn
, with

�<
An = CnJn(k<� sin �)e

i(k<z cos ��!<t+n�): (A.41)

In this form the solution is called in[43] the n-th order non-di�racting portion of
the Axicon Beam. The phase velocity vph = 1= cos � is independent of k<, but, of
course, it is dependent on k<. We shall show below that waves constructed from the
�<
Jn

beams can be subluminal or superluminal !

(ii) Superluminal (Modi�ed) Bessel Solution, B = �
2
> < 0

In this case (A.35a) is the modi�ed Bessel equation and we denote the solutions by

�>
Kn
(t; �; �; z) = CnKn(
>�)e

i(k>z�!>t+n�); n = 0; 1; : : : ; (A.42)

where Kn are the modi�ed Bessel functions, Cn are constants and

!2
> � k2> = �
2

> : (A.43)

We see that �>
Kn

are also examples of UPWs, each of which has group velocity
v> = d!>=dk> such that 1 < v> < 1 and phase velocity 0 < (!>=k>) < 1. As in
the case of the spherical Bessel beam [eq.(A.31)] we see again that our interpretation
of phase and group velocities is correct. Indeed, for the superluminal (modi�ed)
Bessel beam there is no Lorentz frame where the wave is stationary.

The �>
K0

beam was discussed by Band[41] in 1988 as an example of superluminal
motion. Band proposed to launch the �>

K0
beam in the exterior of a cylinder of

radius r1 on which there is an appropriate super�cial charge density. SinceK0(
>r1)
is non singular, his solution works. In section 3 we discuss some of Band's statements.

We are now prepared to present some other very interesting solutions of the
HWE, in particular the so called X-waves[43], which are superluminal, as proved by
the acoustic experiments described in section 2.

Theorem [Lu and Greenleaf ][43]: The three functions below are families of
exact solutions of the HWE [eq.(A.20)] in cylindrical coordinates:

��(s) =

Z 1
0

T (k<)

�
1

2�

Z �

��

A(�)f(s)d�

�
dk< ; (A.44)

�K(s) =

Z �

��

D(�)

�
1

2�

Z �

��

A(�)f(s)d�

�
d� ; (A.45)

�L(�; �; z � t) = �1(�; �)�2(z � t) ; (A.46)
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where
s = �0(k<; �)� cos(� � �) + b(k<; �)[z � c1(k<; �)t] (A.47)

and

c1(k<; �) =

q
1 + [�0(k<; �)=b(k<; �)]2 : (A.48)

In these formulas T (k<) is any complex function (well behaved) of k< and could
include the temporal frequency transfer function of a radiator system, A(�) is any
complex function (well behaved) of � and represents a weighting function of the inte-
gration with respect to �; f(s) is any complex function (well behaved) of s (solution
of eq.(A.29)), D(�) is any complex function (well behaved) of � and represents a
weighting function of the integration with respect to �, called the axicon angle (see
eq.(A.39)), �0(k<; �) is any complex function of k< and �; b(k<; �) is any complex
function of k< and �.

As in the previous solutions, we take c = 1. Note that k<, � and the wave vector
k< of the f(s) solution of eq.(A.29) are related by eq.(A.39). Also �2(z � t) is any
complex function of (z � t) and �1(�; �) is any solution of the transverse Laplace
equation, i.e., �

1

�

@

@�

�
�
@

@�

�
+

1

�2
@2

@�2

�
�1(�; �) = 0: (A.49)

The proof is obtained by direct substitution of ��, �K and �L in the HWE. Ob-
viously, the exact solution �L is an example of a luminal UPW, because if one
\travels" with the speed c = 1, i.e., with z � t = const:, both the lateral and axial
components �1(�; �) and �2(z � t) will be the same for all time t and distance z.
When c1(k; �) in eq.(A.47) is real, (�) represent respectively backward and forward
propagating waves.

We recall that ��(s) and �K(s) represent families of UPWs if c1(k<; �) is inde-
pendent of k< and � respectively. These waves travel to in�nity at speed c1. ��(s)
is a generalized function that contains some of the UPWs solutions of the HWE
derived previously. In particular, if T (k<) = Æ(k< � k

0

<), k
0

< = ! > 0 is a constant
and if f(s) = es, �0(k<; �) = �i
<, b(k<; �) = i� = i!=c1, one obtains Durnin's
UPW beam[16]

�Durnin(s) =

�
1

2�

Z �

��

A(�)e�i
<� cos(���)d�

�
ei(�z�!t): (A.50)

If A(�) = inein� we obtain the n-th order UPW Bessel beam �<
Jn

given by eq.(A.36).

�<
An
(s) is obtained in the same way with the transformation k< = k< cos �; 
< =
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k< sin �.

The X-waves. We now present a superluminal UPW wave which, as discussed
in section 2, is physically realizable in an approximate way (FAA) in the acoustic
case and can be used to generate Hertz potentials for the electromagnetic �eld (see
section 3). We take in eq.(A.44):

T (k<) = B(k<)e
�a0k<; A(�) = inein�; �0(k<; �) = �ik< sin �;

b(k<; �) = ik cos �; f(s) = es: (A.51)

We then get

�>
Xn

= ein�
Z 1
0

B(k<)Jn(k<� sin �)e
�k<[a0�i(z cos ��t)]dk< : (A.52)

In eq.(A.52) B(k<) is any well behaved complex function of k< and represents a
transfer function of practical radiator, k< = ! and a0 is a constant, and � is again
called the axicon angle[26]. Eq.(A.52) shows that �>

Xn
is represented by a Laplace

transform of the function B(k<)Jn(k<� sin �) and an azimuthal phase term ein�.
The name X-waves for the �>

Xn
comes from the fact that these waves have an X-

like shape in a plane containing the axis of symmetry of the waves (the z-axis, see
Fig.4(1) in section 3).

The �>
XBBn

waves. This wave is obtained from eq.(A.44) putting B(k<) = a0. It
is called the X-wave produced by an in�nite aperture and broad bandwidth. We use
in this case the notation �>

XBBn
. Under these conditions we get

�>
XBBn =

a0(� sin �)
nein�p

M(� +
p
M)n

; (n = 0; 1; 2; : : :) (A.53)

where the subscript denotes \broadband". Also

M = (� sin �)2 + � 2 ; (A.54)

� = [a0 � i(z cos � � t)] (A.55)

For n = 0 we get �>
XBB0

:

�>
XBB0

=
a0p

(� sin �)2 + [a0 � i(z cos � � t)]2
: (A.56)
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It is clear that all �>
XBBn

are UPWs which propagate with speed c1 = 1= cos � > 1
in the z-direction. Our statement is justi�ed for as can be easily seen (as in the
modi�ed superluminal Bessel beam) there is no Lorentz frame where �>

XBBn
is at

rest. Observe that this is the real speed of the wave; phase and group velocity
concepts are not applicable here. Eq(A.56) does not give any dispersion relation.

The �>
XBBn

waves cannot be produced in practice as they have in�nite energy
(see section A7), but as we shall show a good approximation for them can be realized
with �nite aperture radiators.

A5. Construction of �<
Jn
and X-Waves with Finite Aperture Radiators

In section A3 we study the condition under which the Rayleigh-Sommerfeld
solution to HWE [eq.(A.24)] can be derived. The condition is just that the wave �
must be written as �(t; ~x) = F (~x)e�i!t; which is true for the Bessel beams �<

Jn
. In

section 2 we show that a �nite aperture approximation (FAA) to a broad band Bessel
beam or Bessel pulse denoted FAA�BBJn or �FAJn [see eq.(2.3)] can be physically
realized and moves as predicted by the theory.

At �rst sight it is not obvious that for the �Xn
waves we can use eq.(A.26), but

actually we can. This happens because we can write,

�>
Xn
(t; ~x) =

1

2�

Z +1

�1

ee�>

Xn
(!; ~x)e�i!td! (A.57)

ee�>

Xn
(!; ~x) = 2�ein�B(!)Jn(!� sin �)H(!)e�!(a0�iz cos �); n = 0; 1; 2; : : :(A.58)

where H(!) is the step function and each
ee�Xn

(!; ~x) is a solution of the transverse
Helmholtz equation. Then the Rayleigh-Sommerfeld approximation can be written
and the FAA can be used. Denoting the FAA to �>

Xn
by �>

FAXn
and using eq.(A.28)

we get

�>
FAXn

(k<; ~x) =
1

i�

Z 2�

0

d�0
Z D=2

0

�0d�0
ee�Xn

(k<; �
0; �0)

eik<R

R2
z

+
1

2�

Z 2�

0

d�0
Z D=2

0

�0d�0
ee�Xn

(k<; �
0; �0)

eik<R

R3
z ; (A.59)

�>
FAXn

(t; ~x) = F�1[�>
FAXn

(!; ~x)]; n = 0; 1; 2; : : : ; (A.60)

where � is the wave length and R = j~x � ~x0j. F�1 represents the inverse Fourier
transform. The �rst and second terms in eq.(A.59) represent respectively the con-
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tributions from high and low frequency components. We attached the symbol > to
�>
FAXn

meaning as before that the wave is superluminal. This is justi�ed from the
results of the experiment described in section 2.

A.5 The Donnelly-Ziolkowski Method (DZM) for Design-
ing Subluminal, Luminal and Superluminal UPWs So-
lutions of the HWE and the Klein-Gordon Equation
(KGE)

Consider �rst the HWE for � [eq.(A.20)] in a homogeneous medium. Let e�(!;~k) be
the Fourier transform of �(t; ~x), i.e.,e�(!;~k) = Z

R3

d3x

Z +1

�1

dt�(t; ~x)e�i(
~k~x�!t) , (A.61a)

�(t; ~x) =
1

(2�)4

Z
R3

d3~k

Z +1

�1

d! e�(!;~k)ei(~k~x�!t). (A.61b)

Inserting (A.61a) in the HWE we get

(!2 � ~k2)e�(!;~k) = 0 (A.62)

and we are going to look for solutions of the HWE and eq.(A.62) in the sense of
distributions. We rewrite eq.(A.62) as

(!2 � k2z � 
2)e�(!;~k) = 0: (A.63)

It is then obvious that any �(!;~k) of the form

e�(!;~k) = �(
; �) Æ[! � (� + 
2=4�)] Æ[kz � (� � 
2=4�)] ; (A.64)

where �(
; �) is an arbitrary weighting function, is a solution of eq.(A.63) since the
Æ-functions imply that

!2 � k2z = 
2 : (A.65)

In 1985[30] Ziolkowski found a luminal solution of the HWE called the Focus
Wave Mode. To obtain this solution we choose, e.g.,

�FWM(
; �) =
�2

i�
exp(�
2z0=4�); (A.66)
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whence we get, assuming � > 0 and z0 > 0,

�FWM(t; ~x) = ei�(z+t)
expf��2�=[z0 + i(z � t)]g

4�i[z0 + i(z � t)]
: (A.67)

Despite the velocities v1 = +1 and v2 = �1 appearing in the phase, the modulation
function of �FWM has very interesting properties, as discussed in details in [46]. It
remains to observe that eq.(A.67) is a special case of Brittingham's formula.[26]

Returning to eq.(A.64) we see that the Æ-functions make any function of the
Fourier transform variables !; kz and 
 to lie in a line on the surface !2�k2z�
2 = 0
[eq.(A.63)]. Then, the support of the Æ-functions is the line

! = � + 
2=4�; kz = � � 
2=4� : (A.68)

The projection of this line in the (!; kz) plane is a straight line of slope �1 ending
at the point (�; �). When � = 0 we must have 
 = 0, and in this case the line
is ! = kz and �(t; ~x) is simply a superposition of plane waves, each one having
frequency ! and traveling with speed c = 1 in the positive z direction.

Luminal UPWs solutions can be easily constructed by the ZM[46], but will not
be discussed here. Instead, we now show how to use ZM to construct subluminal
and superluminal solutions of the HWE.

First Example: Reconstruction of the subluminal Bessel Beams �<
J0

and the su-
perluminal �>

XBB0
(X-wave)

Starting from the \dispersion relation" !2 � k2z � 
2 = 0, we de�nee�(!; k) = �(k; �)Æ(kz � k cos �)Æ(! � k): (A.69)

This implies that

kz = k cos �; cos � = kz=!; ! > 0; �1 < cos � < 1 : (A.70)

We take moreover

 = k sin �; k > 0 : (A.71)

We recall that ~
 = (kx; ky), ~� = (x; y) and we choose ~
:~� = 
� cos �. Now,
putting eq.(A.69) in eq.(A.61b) we get

�(t; ~x) =
1

(2�)4

Z 1
0

dk k sin2 �

�Z 2�

0
d��(k; �) eik� sin � cos �

�
ei(k cos �z�kt): (A.72)
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Choosing

�(k; �) = (2�)3
z0e
�kz0 sin �

k sin �
; (A.73)

where z0 > 0 is a constant, we obtain

�(t; ~x) = z0 sin �

Z 1
0

dk e�kz0 sin �
�
1

2�

Z 2�

0

d� eik� sin � cos �
�
eik(cos � z�t) :

Calling z0 sin � = a0 > 0, the last equation becomes

�>
X0
(t; ~x) = a0

Z 1
0

dk e�ka0J0(k� sin �)e
ik(cos � z�t): (A.74)

Writing k = k< and taking into account eq.(A.41) we see that

J0(k<� sin �)e
ik<(z cos ��t) (A.75)

is a subluminal Bessel beam, a solution of the HWE moving in the positive z di-
rection. Moreover, a comparison of eq.(A.74) with eq.(A.52) shows that (A.74) is

a particular superluminal X-wave, with B(k<) = e�a0k<. In fact it is the �>
XBB0

UPW given by eq.(A.56).

Second Example: Choosing in (A.72)

�(k; �) = (2�)3e�z0j cos �jk cot � (A.76)

gives

�>(t; ~x) = cos2 �

Z 1
0

dk ke�z0j cos �jkJ0(k� sin �)e
�ik(cos �z�t) (A.77a)

=
[z0 � isgn(cos �)(z � t= cos �)]

[�2 tan2 � + [z0 + isgn(cos �)(z � t= cos �)]2]3=2
. (A.77b)

Comparing eq.(A.77a) with eq.(A.52) we discover that the ZM produced in this

example a more general �>
X0

wave where B(k<) = e�z0j cos �jk< . Obviously �>(t; ~x)
given by eq.(A.77b) moves with superluminal speed (1=cos �) in the positive or
negative z-direction depending on the sign of cos �, denoted sgn(cos �).

In both examples studied above we see that the projection of the supporting
line of eq.(A.69) in the (!; kz) plane is the straight line kz=! = cos �, and cos � is
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its reciprocal slope. This line is inside the \light cone" in the (!; kz) plane.

Third Example: Consider two arbitrary lines with the same reciprocal slope that
we denote by v > 1, both running between the lines ! = �kz in the upper half plane
! > 0 and each one cutting the !-axis at di�erent values �1 and �2 (Fig.(12)). The
two lines are projections of members of a family of HWE solution lines and each one
can be represented as a portion of the straight lines (between the lines ! = �kz)

kz = v(! � �1); kz = v(! � �2): (A.78)

It is clear that on the solution line of the HWE, 
 takes values from zero up to a
maximum value that depends on v and � and then back to zero.

We see also that the maximum value of 
, given by �v=
p
v2 � 1, on any HWE

solution line occurs for those values of ! and kz where the corresponding projection
lines cut the line ! = vkz. It is clear that there are two points on any HWE solution
line with the same value of 
 in the interval

0 < 
 < v�=
p
v2 � 1 = 
0: (A.79)

It follows that in this case the HWE solution line breaks into two segments, as is the
case of the projection lines. We can then associate two di�erent weighting functions,
one for each segment. We write

e�(
; !; kz) = �1(
; v; �) Æ

"
kz � v[� +

p
�2v2 � 
2(v2 � 1)]

(v2 � 1)

#
�

�Æ
"
! � [�v2 +

p
v2�2 � 
2(v2 � 1)]

(v2 � 1)

#
+

+ �2(
; v; �) Æ

"
kz � v[� �p�2v2 � 
2(v2 � 1)]

(v2 � 1)

#
�

� Æ
(
! � [�v2 �pv2�2 � 
2(v2 � 1)]

(v2 � 1)

)
: (A.80)

Now, choosing

�1(
; v; �) = �2(
; v; �) = (2�)3=2
q

2
0 � 
2

we get

�v;�(t; �; z) = 
0 exp

�
i�v(z � vt)p

v2 � 1

�Z 1
0

d� �J0(
0��) cos

�

0vp
v2 � 1

(z � t=v)p
1� �2

�
:
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Then

�v;�(t; �; z) = exp

�
i�
v(z � vt)p
v2 � 1

� sinn
0

q
v2

(v2�1)
(z � t=v)2 + �2

o
n

0

q
v2

(v2�1)
(z � t=v)2 + �2

o : (A.81)

If we call v< =
1

v
< 1 and taking into account the value of 
0 given by eq.(A.79),

we can write eq.(A.81) as

�v<(t; �; z) =
sin(
0�<)

�<
ei
0(z�vt) ;

�< =

�
x2 + y2 +

1

1� v2<
(z � v<t)

2

�1=2
; (A.82)

which we recognize as the subluminal spherical Bessel beam of section A4 [eq.(A.31)].

Figure 12: Projection of the support lines of the transforms of two members of a
family of subluminal solutions of the HWE.

Klein-Gordon Equation (KGE): We show here the existence of subluminal, lu-
minal and superluminal UPW solutions of the KGE. We want to solve�

@2

@t2
�r2 +m2

�
�KG(t; ~x) = 0; m > 0; (A.83)
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with the Fourier transform method. We obtain for e�KG(!;~k) (a generalized func-
tion) the equation

f!2 � k2z � (
2 +m2)ge�KG(!;~k) = 0: (A.84)

As in the case of the HWE, any solution of the KGE will have a transforme�(!;~k) such that its support line lies on the surface

!2 � k2z � (
2 +m2) = 0 : (A.85)

From eq.(A.85), calling 
2 +m2 = K2, we see that we are in a situation identical
to the HWE for which we showed the existence of subluminal, superluminal and
luminal solutions. We write down as examples one solution of each kind.

Subluminal UPW solution of the KGE. To obtain this solution it is enough to

change in eq.(A.81) 
0 = v�=
p
v2 � 1! 
KG

0 =

"�
v�p
v2 � 1

�2

�m2

#1=2
. We have

�KG
< (t; �; z) = exp

�
i�v(z � vt)p

v2 � 1

�
sin(
KG

0 �<)

�<
;

�< =

�
x2 + y2 +

1

1� v2<
(z � v<t)

2

�1=2
; v< = 1=v: (A.86)

Luminal UPW solution of the KGE. To obtain a solution of this type it is enough,
as in eq.(A.64), to write

e�KG = �(
; �)Æ[kz � (
2 + (m2 � �2)=2�)]Æ[! � (
2 + (m2 + �2)=2�)] : (A.87)

Choosing

�(
; �) =
(2�)2

�
exp(�z0
2=2�); z0 > 0; (A.88)

gives

�KG
� (t; ~x) =

= exp(iz(m2 � �2)=2�) exp(�it(m2 + �)=2�)
expf��2�=2[z0 � i(z � t)]g

[z0 � i(z � t)]
: (A.89)
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Superluminal UPW solution of the KGE. To obtain a solution of this kind we
introduce a parameter v such that 0 < v < 1 and write for e�KG in (A.84)

e�KG
v;� (!;
; kz) = �(
; v; �) Æ

24! �
�
��v2 +p(
2 +m2)(1� v2) + v2�2

�
1� v2

35�
�Æ

24kz � v
�
�� +p(
2 +m2)(1� v2) + v2�2

�
1� v2

35 : (A.90)

Next we choose

�(
; v; �) =
(2�)3 exp(�z0

p

2
0 + 
2)p


2
0 + 
2

; (A.91)

where z0 > 0 is an arbitrary parameter, and where


2
0 =

�2v2

1� v2
+m2 : (A.92)

Then introducing v> = 1=v > 1 and 
> =
1p

v2> � 1
, we get

�KG>
v;� (t; ~x) = exp

�
i(
2

0 �m2)(z � vt)

�v

�
expf�
0

p
[z0 � i
>(z � v>t)]2 + x2 + y2gp

[z0 � i
>(z � v>t)]2 + x2 + y2
;

(A.93)
which is a superluminal UPW solution of the KGE moving with speed v> in the z
direction. From eq.(A.93) it is an easy task to reproduce the superluminal spherical
Bessel beam which is solution of the HWE [eq.(A.30)].

A7. On the Energy of the UPWs Solutions of the HWE

Let �r(t; ~x) be a real solution of the HWE. Then, as it is well known, the energy
of the solution is given by

" =

Z Z Z
IR3

dv

"�
@�r

@t

�2

� �rr2�r

#
+ lim

R!1

Z Z
S(R)

dS �r ~n:r�r ; (A.94)
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where S(R) is the 2-sphere of radius R .
We can easily verify that the real or imaginary parts of all UPWs solutions of the

HWE presented above have in�nite energy. The question arises of how to project
superluminal waves, solutions of the HWE, with �nite energy. This can be done if
we recall that all UPWs discussed above can be indexed by at least one parameter
that here we call �. Then, calling ��(t; ~x) the real or imaginary parts of a given
UPW solution we may form \packets" of these solutions as

�(t; ~x) =

Z
d�F (�)��(t; ~x) (A.95)

We now may test for a given solution �� and for a weighting function F (�) if
the integral in eq.(A.94) is convergent. We can explicitly show for some (but not
all) of the solutions showed above (subluminal, luminal and superluminal) that for
weighting functions satisfying certain integrability conditions the energy " results
�nite. It is particularly important in this context to quote that the �nite aperture
approximations for all UPWs have, of course, �nite energy. For the case in which �
given by eq.(A.95) is used to generate solutions for, e.g., Maxwell or Dirac �elds (see
Appendix B), the conditions for the energy of these �elds to be �nite will in general
be di�erent from the condition that gives for � a �nite energy. This problem will
be discussed with more details in another paper.

B A Uni�ed Theory for Construction of UPWs

Solutions of Maxwell, Dirac and Weyl Equa-

tions

In this appendix we brie
y recall the main results concerning the theory of Cli�ord
algebras (and bundles) and their relationship with the Grassmann algebras (and
bundles). Also the concept of Dirac-Hestenes spinors and their relationship with
the usual Dirac spinors used by physicists is clari�ed. We introduce moreover the
concepts of the Cli�ord and Spin-Cli�ord bundles of spacetime and the Cli�ord cal-
culus. As we shall see, this formalism provides a uni�ed theory for the construction
of UPWs subluminal, luminal and superluminal solutions of Maxwell, Dirac and
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Weyl equations. More details on the topics of this appendix can be found in[6�9]

and[81].

B.1 Mathematical Preliminaries

Let M = (M; g;D) be Minkowski spacetime. (M; g) is a four-dimensional time
oriented and space oriented Lorentzian manifold, withM ' IR4 and g 2 sec(T �M �
T �M) being a Lorentzian metric of signature (1,3). T �M [TM ] is the cotangent [tan-
gent] bundle. T �M = [x2MT �xM and TM = [x2MTxM , and TxM ' T �xM ' IR1;3,
where IR1;3 is the Minkowski vector space[60;61;62]. D is the Levi-Civita connection
of g, i.e., Dg = 0, T (D) = 0. Also R(D) = 0, T and R being respectively the
torsion and curvature tensors. Now, the Cli�ord bundle of di�erential forms C̀ (M)
is the bundle of algebras C̀ (M) = [x2M C̀ (T �xM), where 8x 2 M; C̀ (T �xM) = C̀ 1;3,
the so called spacetime algebra[9;81�85]. Locally as a linear space over the real �eld
IR, C̀ (T �x (M)) is isomorphic to the Cartan algebra

V
(T �xM) of the cotangent space

and
V
(T �xM) =

P4
k=0

V
k(T �xM), where

Vk(T �xM) is the
�
4
k

�
-dimensional space of k-

forms. The Cartan bundle
V
(M) = [x2M

V
(T �xM) can then be thought as \embed-

ded" in C̀ (M). In this way sections of C̀ (M) can be represented as a sum of inhomo-
geneous di�erential forms. Let fe� = @

@x�
g 2 sec TM , (� = 0; 1; 2; 3) be an orthonor-

mal basis g(e�; e�) = ��� = diag(1;�1;�1;�1) and let f
� = dx�g 2 sec
V1(M) �

sec C̀ (M) be the dual basis. Then, the fundamental Cli�ord product (denoted in
what follows by juxtaposition of symbols) is generated by 
�
� + 
�
� = 2��� and
if C 2 secC̀ (M) we have

C = s+ v�

� +

1

2!
b��


�
� +
1

3!
a���


�
�
� + p
5 ; (B.1)

where 
5 = 
0
1
2
3 = dx0dx1dx2dx3 is the volume element and s, v�, b�� , a���,
p 2 sec

V0(M) � sec C̀ (M). For Ar 2 sec
Vr(M) � sec C`(M), Bs 2 sec

Vs(M)
we de�ne[9;82] Ar � Bs = hArBsijr�sj and Ar ^ Bs = hArBsir+s, where h ik is the

component in
Vk(M) of the Cli�ord �eld.

Besides the vector bundle C̀ (M) we also need to introduce another vector bundle
C̀ Spin+(1;3)(M) [Spin+(1; 3) ' SL(2; IC)] called the Spin-Cli�ord bundle[8;81;84]. We
can show that C̀ Spin+(1;3)(M) ' C̀ (M)=R, i.e. it is a quotient bundle. This means
that sections of C̀ Spin+(1;3)(M) are equivalence classes of sections of the Cli�ord
bundle, i.e., they are equivalence sections of non-homogeneous di�erential forms
(see eqs.(B.2,B.3) below).

Now, as is well known, an electromagnetic �eld is represented by F 2 sec
V2(M) �
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sec C̀ (M). How to represent the Dirac spinor �elds in this formalism ? We can show
that the even sections of C̀ Spin+(1;3)(M), called Dirac-Hestenes spinor �elds, do the

job. If we �x two orthonormal basis � = f
�g as before, and _� = f _
� = R
� eR =

��
�


�g with ��
� 2 SO+(1; 3) and R(x) 2 Spin+(1; 3) 8x 2 M , R eR = eRR = 1, and

wheree is the reversion operator in C̀ 1;3, then
[8;81] the representatives of an even

section  2 sec C̀ Spin+(1;3)(M) are the sections  � and  _� of C̀ (M) related by

 _� =  �R (B.2)

and

 � = s+
1

2!
b��


�
� + p
5: (B.3)

Note that  � has the correct number of degrees of freedom in order to represent a
Dirac spinor �eld, which is not the case with the so called Dirac-K�ahler spinor �eld
(see[8;81]).

Let ? be the Hodge star operator ? :
Vk(M) ! V4�k(M). We can show that

if Ap 2 sec
Vp(M) � sec C̀ (M) we have ?A = eA
5. Let d and Æ be respectively

the di�erential and Hodge codi�erential operators acting on sections of
V
(M). If

!p 2 sec
Vp(M) � sec C̀ (M), then Æ!p = (�1)p ?�1 d ? !p, with ?�1? = identity.

The Dirac operator acting on sections of C̀ (M) is the invariant �rst order dif-
ferential operator

@ = 
�De�; (B.4)

and we can show the very important result (see e.g.[6]):

@ = @ ^ +@� = d� Æ: (B.5)

With these preliminaries we can write Maxwell and Dirac equations as follows[82;85]:

@F = 0; (B.6)

@ �

1
2 +m �


0 = 0: (B.7)

We discuss more this last equation (Dirac-Hestenes equation) in section B.4. If
m = 0 we have the massless Dirac equation

@ � = 0; (B.8)

which is Weyl's equation when  � is reduced to a Weyl spinor �eld (see eq.(B.12 be-
low). Note that in this formalism Maxwell equations condensed in a single equation!
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Also, the speci�cation of  � depends on the frame �. When no confusion arises we
represent  � simply by  .

When  �
~ � 6= 0, where � is the reversion operator, we can show that  � has

the following canonical decomposition:

 � =
p
� e�
5=2R ; (B.9)

where �, � 2 sec
V0(M) � sec C̀ (M) and R 2 Spin+(1; 3) � C̀ +

1;3, 8x 2 M . � is

called the Takabayasi angle[8].
If we want to work in terms of the usual spinor �eld formalism, we can translate

our results by choosing, for example, the standard matrix representation of f
�g, and
for  � given by eq.(B.3) we have the following (standard) matrix representation[8;49]:

	 =

�
�1 ���2
�2 ��1

�
; (B.10)

where

�1 =

�
s� ib12 b13 � ib23

�b13 � ib23 s+ ib12

�
; �2 =

� �b03 + ip �b01 + ib02
�b01 � ib02 b03 + ip

�
; (B.11)

with s; b12; : : : real functions; � denotes the complex conjugation. Right multiplica-
tion by 0BB@

1
0
0
0

1CCA
gives the usual Dirac spinor �eld.

We need also the concept of Weyl spinors. By de�nition,  2 sec C̀ +(M) is a
Weyl spinor if[83]


5 = � 
21 : (B.12)

The positive [negative] \eigenstate" of 
5 will be denoted  + [ �]. For a general
 2 sec C̀ +(M) we can verify that

 � =
1

2
[ � 
5 
21] (B.13)

are Weyl spinors with eigenvalues �1 of eq.(B.12).
We recall that the even subbundle C̀ +(M) of C̀ (M) is such that its typical �ber

is the Pauli algebra C̀ 3;0 � C̀ +
1;3 (which is isomorphic to IC(2), the algebra of 2� 2
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complex matrices). The isomorphism C̀ 3;0 � C̀ +
1;3 is exhibited by putting �i = 
i
0,

whence �i�j + �j�i = 2Æij. We recall also[8;81] that the Dirac algebra is C̀ 4;1 � IC(4)
(see section B4) and C̀ 4;1 � IC 
 C̀ 1;3

[86].

B.2 Inertial Reference Frames (I), Observers and Naturally
Adapted Coordinate Systems

Let M = (M; g;D) be Minkowski spacetime. An inertial reference frame (irf) I is
a timelike vector �eld I 2 sec TM pointing into the future such that g(I; I) = 1
and DI = 0. Each integral line of I is called an inertial observer. The coordinate
functions hx�i; � = 0; 1; 2; 3 of the maximal atlas of M are said to be a naturally
adapted coordinate system to I (nacs/I) if I = @=@x0 [61;62]. Putting I = e0 we can
�nd ei = @=@xi; i = 1; 2; 3 such that g(e�; e�) = ��� and the coordinate functions
x� are the usual Einstein-Lorentz ones and have a precise operational meaning:
x0 = ct(�), where t is measured by \ideal clocks" at rest on I and synchronized \�a
la Einstein", xi; i = 1; 2; 3 are determined with ideal rules[61;62]. (We use units where
c = 1.)

B.3 Maxwell Theory in C̀ (M) and the Hertz Potential

Let e� 2 sec TM be an orthonormal basis, g(e�; e�) = ��� and e� = @=@x� (�; � =
0; 1; 2; 3), such that e0 determines an IRF. Let 
� 2 sec

V2(M) � sec C`(M) be the
dual basis and let 
� = ���


� be the reciprocal basis to 
�, i.e., 
�:
� = Æ�� . We
have 
� = dx�.

As is well known the electromagnetic �eld is represented by a two-form F 2
sec

V2(M) � sec C`(M). We have

F =
1

2
F ��
�
�; F

�� =

0BB@
0 �E1 �E2 �E3

E1 0 �B3 B2

E2 B3 0 �B1

E3 �B2 B1 0

1CCA ; (B.14)

where (E1; E2; E3) and (B1; B2; B3) are respectively the Cartesian components of
the electric and magnetic �elds. Let J 2 sec

V1(M) � sec C`(M) be such that

15(�)c is the constant called velocity of light in vacuum. In view of the superluminal and sub-
luminal solutions of Maxwell equations found in this paper we don't think the terminology to be
still satisfactory.

71



J = J�
� = �
0 + J1
1 + J2
2 + J3
3; (B.15)

where � and (J1; J2; J3) are respectively the Cartesian components of the charge
and of the three-dimensional current densities.

We now write Maxwell equation given by B.6 in C`+(M), the even sub-algebra
of C`(M). The typical �ber of C`+(M), which is a vector bundle, is isomorphic to
the Pauli algebra (see section B1). We put

~�i = 
i
0; i = ~�1~�2~�3 = 
0
1
2
3 = 
5: (B.16)

Recall that i commutes with bivectors and since i2 = �1 it acts like the imagi-
nary unit i =

p�1 in C`+(M). From eq.(B.14), we get

F = ~E + i ~B (B.17)

with ~E = Ei~�i, ~B = Bj~�j, i; j = 1; 2; 3. Now, since @ = 
�@
� we get @
0 =

@=@x0 + ~�i@
i = @=@x0 �r. Multiplying eq.(B.6) on the right by 
0 we have

@
0
0F
0 = J
0;

(@=@x0 �r)(� ~E + i ~B) = � + ~J; (B.18)

where we used 
0F
0 = � ~E + i ~B and ~J = J i~�i. From eq.(B.18) we have

�@0 ~E + i@0 ~B +r ~E � ir ~B = �+ ~J (B.19)

�@0 ~E + i@0 ~B +r: ~E +r^ ~E � ir: ~B � ir^ ~B = �+ ~J (B.20)

We have also
�ir^ ~A � r� ~A (B.21)

since the usual vector product between two vectors ~a = ai~�i, ~b = bi~�i can be
identi�ed with the dual of the bivector ~a ^~b through the formula ~a �~b = �i(~a ^
~b). Observe that in this formalism ~a �~b is a true vector and not the meaningless
pseudovector of the Gibbs vector calculus. Using eq.(B.21) and equating the terms
with the same grade we obtain

r: ~E = � ; r� ~B � @0 ~E = ~J ;

r� ~E + @0 ~B = 0 ; r: ~B = 0 ;

(B.22)

72



which are Maxwell equations in the usual vector notation.
We now introduce the concept of Hertz potential[19] which permits us to �nd

nontrivial solutions of the free \vacuum" Maxwell equation

@F = 0 (B.23)

once we know nontrivial solutions of the scalar wave equation,

2� = (@2=@t2 �r2)� = 0; � 2 sec
V0(M) � sec C`(M) : (B.24)

Let A 2 sec
V1(M) � sec C`(M) be the vector potential. We �x the Lorentz

gauge, i.e., @:A = �ÆA = 0 such that F = @A = (d � Æ)A = dA. We have the
following important result:

Theorem: Let � 2 sec
V2(M) � sec C`(M) be the so called Hertz potential. If �

satis�es the wave equation, i.e., 2� = @2� = (d � Æ)(d � Æ)� = �(dÆ + Æd)� = 0
and if we take A = �Æ�, then F = @A satis�es the Maxwell equation @F = 0.

The proof is trivial. Indeed, A = �Æ�, implies ÆA = �Æ2� = 0 and F = @A =
dA. Then @F = (d � Æ)(d � Æ)A = Æd(Æ�) = �Æ2d� = 0, since Æd� = �dÆ� from
@2� = 0.

From this result we see that if � 2 sec
V0(M) � sec C`(M) satis�es @2� = 0,

then we can �nd non trivial solution of @F = 0, using a Hertz potential given, e.g.,
by

� = �
1
2 : (B.25)

In section 3 this equation is used to generate the superluminal electromagnetic X-
wave.

We now express the Hertz potential and its relation with the ~E and ~B �elds, in
order for our reader to see more familiar formulas. We write � as sum of electric
and magnetic parts, i.e.,

� = ~�e + i~�m

~�e = ��0i~�i; ~�m = ��23~�1 + �13~�2 � �12~�3

(B.26)

Then, since A = @:� we have

A =
1

2
(@� � �

 

@ ) (B.27)

A
0 = �@0~�e +r:~�e � (r� ~�m) (B.28)
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and since A = A�
� we also have

A0 = r:~�e ; ~A = Ai~�i = � @

@x0
~�e +r� ~�m :

Since ~E = �rA0 � @

@x0
~A and ~B = r� ~A, we obtain

~E = �@0(r� ~�m)�r�r� ~�e ; (B.29)

~B = r� (�@0~�e +r� ~�m) = �@0(r� ~�e) +r�r� ~�m : (B.30)

We de�ne ~Ee; ~Be; ~Em; ~Bm by

~Ee = �r�r� ~�e ; ~Be = �@0(r� ~�e) ;
~Em = �@0(r� ~�m) ; ~Bm = r�r� ~�m :

(B.31)

We now introduce the 1-forms of stress-energy. Since @F = 0 we have eF e@ = 0.
Multiplying the �rst of these equation on the left by eF and the second on the right
by eF and summing we have:

(1=2)( eF@F + eF e@F ) = @�((1=2) eF
�F ) = @�T
� = 0; (B.32)

where eF e@ � �(@� 1
2
F��


�
�)
�. Now,

�1

2
(F
�F )
� = �1

2
(F
�F
�) (B.33)

Since 
�:F =
1

2
(
�F � F
�) = F:
�, we have

T �� = �h(F:
�)F
�i0 � 1

2
h
�F 2
�i0

= �(F:
�):(F:
�)� 1

2
(F: F )
�:
� (B.34)

= F ��F ����� +
1

4
���F��F

��;

which we recognize as the stress-energy momentum tensor of the electromagnetic
�eld, and T � = T ��
�.
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By writing F = ~E + i ~B as before we can immediately verify that

T0 = �1

2
F
0F

=

�
1

2
( ~E2 + ~B2) + ( ~E � ~B)

�

0: (B.35)

We have already shown that @�T
� = 0, and we can easily show that

@:T � = 0: (B.36)

We now de�ne the density of angular momentum. Choose as before a Lorentzian
chart hx�i of the maximal atlas of M and consider the 1-form x = x�
� = x�


�.
De�ne

M� = x ^ T� = 1

2
(x�T�� � x�T��)


� ^ 
� :
It is trivial to verify that as T�� = T�� and @�T

�� = 0, it holds

@�M� = 0: (B.37)

The invariants of the electromagnetic �eld F are F: F and F ^ F and

F 2 = F: F + F ^ F ;

F: F = �1

2
F ��F�� ; F ^ F = �
5F ��F ��"���� : (B.38)

Writing as before F = ~E + i ~B we have

F 2 = ( ~E2 � ~B2) + 2i ~E: ~B = F: F + F ^ F: (B.39)

B.4 Dirac Theory in C`(M)

Let � = f
�g 2 sec
V1(M) � sec C`(M) be an orthonormal basis. Let  � 2

sec(
V0(M)+

V2(M)+
V4(M)) � sec C`(M) be the representative of a Dirac-Hestenes

Spinor �eld in the basis �. Then, the representative of Dirac equation in C`(M) is
the following equation (~ = c = 1):

@ �
1
2 +m �
0 = 0 : (B.40)

The proof is as follows:

75



Consider the complexi�cation C`C(M) of C`(M) called the complex Cli�ord bun-
dle. Then C`C(M) = IC 
 C`(M) and by the results of section B1 it is trivial to see
that the typical �ber of C`C(M) is C`4;1 = IC 
 C`1;3, the Dirac algebra. Now let
f�0;�1;�2;�3;�4g � sec

V1(M) � sec C`C(M) be an orthonormal basis with

�a�b + �b�a = 2gab ; (B.41)

gab = diag(+1;+1;+1;+1;�1) :
Let us identify 
� = ���4 and call I = �0�1�2�3�4. Since I2 = �1 and I

commutes with all elements of C`4;1 we identify I with i =
p�1 and 
� with the

fundamental set of C`(M). Then if A 2 sec C`C(M) we have

A = �s + A�
C
� +

1

2
B��
C 
�
� +

1

3!
����C 
�
�
� + �p
5; (B.42)

where �s, �p, A
�
C , B

��
C , ����C 2 sec IC 
V0(M) � sec C`C(M), i.e., 8x 2 M , �s(x),

�p(x), A
�
C(x), B

��
C (x), ����C (x) are complex numbers.

Now,

f =
1

2
(1 + 
0)

1

2
(1 + i
1
2) ; f 2 = f ;

is a primitive idempotent �eld of C`C(M). We can show that if = 
2
1f . From
(B.40) we can write the following equation in C`C(M):

@ �
2
1f �m �
0f = 0 (B.43)

@ �if �m �f = 0 (B.44)

and we have the following equation for 	 =  �f :

i@	�m	 = 0: (B.45)

Using for 
� the standard matrix representation (denoted here by 

�
) we get

that the matrix representation of eq.(B.45) is

i
�@�j	i �mj	i = 0 (B.46)

where now j�i is a usual Dirac spinor �eld.
We now de�ne a potential for the Dirac-Hestenes �eld  �. Since  � 2 sec C`+(M)

it is clear that there exist A and B 2 sec
V1(M) � sec C`(M) such that

 � = @(A + 
5B); (B.47)
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since

@(A + 
5B) = @:A + @ ^ A� 
5@:B � 
5@ ^B (B.48)

= S +B + 
5P ; (B.49)

S = @:A; B = @ ^ A� 
5@ ^ B; P = �@:B:
We see that when m = 0,  � satis�es the Weyl equation

@ � = 0 : (B.50)

Using eq.(B.50) we see that
@2A = @2B = 0: (B.51)

This last equation allows us to �nd UPWs solutions for the Weyl equation once
we know UPWs solutions of the scalar wave equation 2� = 0, � 2 sec

V0(M) �
sec C`(M). Indeed it is enough to put A = (A + 
5B) = �(1 + 
5)v, where v is a
constant 1-form �eld. This result has been be used in[48] to present subluminal and
superluminal solutions of the Weyl equation.

We know (see appendix A, section A5) that the Klein-Gordon equation have
superluminal solutions. Let �> be a superluminal solution of 2�> + m2�> =
0. Suppose �> is a section of C`C(M). Then in C`C(M) we have the following
factorization:

(2 +m2)� = (@ + im)(@ � im)� = 0: (B.52)

Now
	> = (@ � im)�>f (B.53)

is a Dirac spinor �eld in C`C(M), since

(@ + im)	> = 0 (B.54)

If we use for � in eq.(B.52) a subluminal or a luminal UPW solution and then use
eq.(B.53) we see that Dirac equation also has UPWs solutions with arbitrary speed
0 � v <1.
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