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2D and 3D High Frame Rate Imaging with
Limited Diffraction Beams

Jian-yu Lu, Member, IEEE

Abstract—A new 2D (two-dimensional) and 3D (three-
dimensional) pulse-echo imaging method (Fourier method)
has been developed with limited diffraction beams. In this
method, a plane wave pulse (broadband) is used to transmit
and limited diffraction beams of different parameters are
used to receive. Signals received are processed to obtain
spatial Fourier transform of object functions and images
are constructed with an inverse Fourier transform. Because
only one transmission is required to construct images, this
method may achieve a high frame rate (up to 3750 frames/s
for biological soft tissues at a depth of 200 mm). To demon-
strate the efficacy of the method, both 2D C-mode and
3D images have been simulated using conditions that are
typical for medical ultrasound. Results show that images
of high resolutions (about 6 wavelengths at 200 mm) and
low sidelobes (around �60 dB) can be constructed over a
large depth of interest (30 to 200 mm) with a 50 mm di-
ameter aperture. Experiments with the new method have
also been carried out. 2D B-mode images have been con-
structed with conventional linear arrays. In the experiment,
an ATS 539 tissue-equivalent phantom and two linear ar-
rays were used. The first array had a center frequency of
2.25 MHz, dimension of 18.288 mm � 12.192 mm, and 48
elements. The second had a center frequency of 2.5 MHz,
38.4 mm � 10 mm in dimension, and 64 elements. Images
of different fields of views were constructed from RF data
acquired with these arrays using both the new and conven-
tional dynamic focusing (delay-and-sum) methods. Results
show that qualities of images constructed are almost iden-
tical with the two methods in terms of sidelobes, contrast,
and lateral and axial resolutions. Phase aberration has also
been assessed for the two methods, and results show that its
influence is about the same on both methods. In addition,
a practical imaging system to implement the new method
is suggested and potential applications of the method are
discussed.

I. Introduction

Limited diffraction beams were first discovered by
Stratton in 1941 [1] where he derived a Bessel beam

solution to the isotropic-homogeneous wave equation. In
1987, Durnin [2] and Durnin et al. [3] studied the Bessel
beam again and produced the beam approximately with an
optical experiment. Durnin has termed Bessel beams “non-
diffracting” or “diffraction-free” beams. Because Durnin’s
terminologies are controversial, the new terminology “lim-
ited diffraction beams” has been used in recent years
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[4]. The new terminology is based on the fact that any
practical beams will diffract eventually. Limited diffrac-
tion beams have an interesting feature: theoretically, these
beams can propagate to an infinite distance without chang-
ing their transverse beam patterns. In practice, when pro-
duced with a finite-aperture radiator, these beams have a
large depth of field as compared to conventional spherically
focused beams. Because of this property, limited diffrac-
tion beams such as Bessel beams have been studied by
many other investigators in optics, microwave, and acous-
tics [5]–[12]. In addition, limited diffraction beams have
been studied for both medical and nonmedical applica-
tions, such as, medical imaging [4], [13]–[18], tissue char-
acterization [19], transverse Doppler velocity measurement
[20], [21], high-speed digital wireless telecommunications
[22], and nondestructive evaluation of industrial materi-
als [23]. Recently, a new class of limited diffraction beams
such as X waves [24]–[28], limited diffraction array beams
[29]–[31], and bowtie limited diffraction beams [13]–[14],
have been developed and their theories have been studied
extensively [32]–[34].

In addition to limited diffraction beams, localized waves
are another class of beams that have a large depth of field.
Localized waves were first discovered by Brittingham in
1983 [35] and were further studied by Ziolkowski [36] and
Ziolkowski et al. [37] and many other investigators [38],
[39]. These waves deform as they propagate but have lower
sidelobes than limited diffraction beams such as Bessel
beams and X waves. However, when localized waves are
produced with a finite bandwidth that is realizable with a
medical ultrasound transducer, their sidelobes are as high
as those of Bessel beams and X waves [4], [40].

In this paper, a new method (Fourier method) [20], [41]
for high frame rate 2D (two-dimensional) B-mode (image
plane is defined by transducer and its beam axis), 2D C-
mode (image plane is in parallel with transducer surface),
and 3D (three-dimensional) pulse-echo imaging has been
developed with limited diffraction beams [15], [24], specif-
ically, with limited diffraction array beams [29]–[31]. In
this method, a plane wave pulse (broadband) is transmit-
ted from a 2D (for 2D C–mode and 3D imaging) or 1D (for
2D B-mode imaging) array transducer to uniformly illumi-
nate objects to be imaged, and echoes returned from the
objects are received with the same transducer but weighted
to produce limited diffraction responses. The received sig-
nals are used to calculate the Fourier transform of the
object to be imaged. Object functions (reflectivity coef-
ficients) are constructed with a 2D (for 2D imaging) or
3D (for 3D imaging) inverse spatial Fourier transform. In
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the image construction, the entire transducer aperture is
used and both the transmission and reception beams do
not diverge over a large depth of interest. This results in
an imaging system of a high signal-to-noise ratio (SNR)
as compared to that of conventional dynamically focused
systems. Because only one transmission is required to con-
struct 2D or 3D images, in theory, this method can achieve
a maximum frame rate of about 3750 frames/second for
imaging of biological soft tissues at a depth of 200 mm. In
addition, the Fourier and inverse Fourier transforms can
be implemented with FFT (fast Fourier transform) and
IFFT (inverse fast Fourier transform) algorithms that can
be realized with modern DSP (digital signal processing)
chips or ASIC (application specific integrated circuit) re-
sulting in simple and inexpensive imaging systems as com-
pared to conventional dynamically focused digital beam
formers. With the new method, beam steering is not nec-
essary. However, electronic steering of beams can also be
applied to increase the field of view of images. Because
of high frame rate, speckle tracking technique [42] may
be better applied with the new method to obtain either
2D or 3D blood flow velocity vectors. Underwater acoustic
imaging in high frame rate is also possible with the new
method [43]. Moreover, theory of the new method can be
extended to other data acquisition geometries to improve
image quality (see Discussion).

Several methods have been developed in the past that
either increase image frame rate or use also backscattered
waves to construct 2D and 3D images. The first is a 3D
imaging system developed at the Duke University where
a wide transmit beam is used to illuminate an area that
contains 16 to 32 conventional dynamically focused receive
beams [44]–[46]. This system is limited. Firstly, the frame
rate is increased at most by 32 times, which is still low for
conventional imaging. For color blood flow imaging, the
frame rate will be further reduced. Secondly, there must
be 16 to 32 multichannel dynamic focusing beamformers
to process receive signals in parallel. Although this prob-
lem was partially avoided by using one main beamformer
and multiple approximate beamformers (explososcan [44]),
the approximate beamformers produce phase errors that
distort images of objects and degrade image quality as the
receive beams scan from one angle to another. Thirdly, to
cover all 16 to 32 receive beams uniformly, the transmit
beam must be wide enough and thus the area of the trans-
mit aperture is reduced by at least 16 to 32 times that in
turn dramatically decrease transmit energy leading to a
low SNR at deeper depths.

Other methods are based on synthetic aperture and
holographic concepts [47], [48]. In these methods, diverging
transmit beams are used to illuminate an object to be con-
structed. Received backscatter signals are processed with
a delay-and-sum algorithm [49] where, for each point in
the object, its distances to the elements of a receiver array
are determined by arriving times of echoes, and appropri-
ate delays are added to the receive signals so they can be
summed constructively for that point. For this method to
work, RF signals are required and thus a high sampling

rate is needed to avoid signal aliasing and delay quanti-
zation errors. Assume that there is a 3D object that has
Nx×Ny×Nz points, where Nz is a large number needed to
avoid aliasing, the delay-and-sum algorithm requires about
Nx ×Ny ×Nz ×Nx1 ×Ny1 computations plus delay and
interpolation operations, where Nx1 and Ny1 are number
of elements of a 2D array in the x and y directions, respec-
tively. This requires a huge computation power to achieve
a frame rate of 3750 leading to a very complex system.
In addition, the energy density of a diverging wave is in-
versely proportional to the square of distance, and thus the
systems will have a low SNR in biological soft tissues. Yli-
talo and Ermert have proposed a backpropagation Fourier
method [70]. This method has a very low frame rate in
3D imaging because more than 10,000 transmissions are
required to obtain a frame of image. This method also
suffers from low SNR because strongly diverged transmit
beams have to be used to increase lateral resolution. In ad-
dition, the method is based on holographic concept, where
monochromatic illumination is desirable which reduces ax-
ial resolution of images. Methods for 3D real-time imag-
ing using coded transmissions and matrix inversions have
also been proposed [50]. These methods require a complex
data acquisition system and suffer from problems similar
to the delay-and-sum (a large amount of computations)
method.

It is worth noting that construction of images from
backscattered signals has also been studied by many inves-
tigators [51]–[53]. Norton and Linzer [51] have suggested
using a point source on a 2D surface to transmit and re-
ceive sequentially to construct images. As discussed above,
this method suffers from low frame rate and low SNR and
thus is not suitable for the study of biological soft tis-
sues for a valid medical diagnosis. Ultrasound tomography
can also be used to construct images with backscattered
signals. However, it requires transducers to rotate 360◦

around the body [54], [55]. This limits its application be-
cause of acoustic obstructions in the human body. In addi-
tion, tomography is slow, systems are complex, and images
may suffer from misalignment problems due to significant
changes of speed of sound at different viewing angles.

To demonstrate the efficacy of the new method devel-
oped in this paper, 2D C-mode and 3D images are sim-
ulated using conditions that are typical for conventional
medical ultrasonic B-scan imaging. In the simulations, a
50 mm diameter 2D array transducer is assumed. The
transducer has a center frequency of 2.5 MHz and a band-
width of about 81% of the center frequency. Objects im-
aged are assumed to be composed of point scatterers em-
bedded in a uniform background medium such as water.
Images at 3 axial distances (30, 100, and 200 mm) are con-
structed. Results show that high-resolution (about 6 wave-
lengths at 200 mm) and low-sidelobe (around −60 dB) im-
ages can be obtained under these conditions. In addition,
a 3D imaging system to implement the method is sug-
gested. The system is similar to conventional B-scanners
from the operation point of view (pulse-echo mode) but
has a completely different beamformer that can be realized
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with simple and inexpensive hardware and has a potential
to achieve a much higher frame rate.

Recently, an experiment for the new method has been
carried out on an ATS 539 tissue-equivalent phantom
(ATS Laboratories, Inc., Bridget Port, CT, USA) using
two linear arrays [56]. The phantom has a frequency-
dependent attenuation of about 0.5 dB/MHz/cm. The first
array has a center frequency of 2.25 MHz, dimension of
18.288 mm × 12.192 mm, and 48 elements. The second
has a center frequency of 2.5 MHz, 38.4 mm × 10 mm in
dimension, and 64 elements. Images of different fields of
views were constructed with RF data acquired with these
arrays using both the new and conventional dynamic fo-
cusing (delay-and-sum) methods [49]. Results show that
qualities of images constructed are almost identical with
the two methods in terms of sidelobes, contrast, and lat-
eral and axial resolutions. Influence of phase aberration
has also been studied for the two methods, and results
show that it is about the same on both methods [57].

This paper is organized as follows. In Section II, the-
oretical formulas of the new imaging method are derived
with limited diffraction beams. 2D and 3D images of sev-
eral objects are simulated in Section III, and results are
presented in Section IV. A suggested system to implement
the new method is given in Section V. Extension of theory
and discussions of the method are in Section VI. Finally,
brief summary and conclusion are given in Section VII.

II. Theory

In this section, a new imaging method (Fourier method)
for a pulse-echo system will be developed and formulas for
construction of 2D and 3D images will be derived from
limited diffraction beams.

A. Derivation of Limited Diffraction Array
Beams from X Waves

In the following, broadband limited diffraction array
beams [29]–[31] will be first derived using X waves [24],
[25] that have been extensively studied in the past few
years and their properties are well understood.

The equation for X waves may be expressed as follows
(see (12) in [24]):

ΦXn(~r, t) = ΦXn(r, φ, z − c1t)

= einφ
∞∫

0

B(k)Jn(kr sin ζ)e−k[a0−i cos ζ(z−c1t)]dk,

(n = 0, 1, 2, . . . ),

(1)

where ~r = (r, φ, z) represents a spatial point in the cylin-
drical coordinates, t is time, r is radial distance, φ is polar
angle, z is the axial distance, c1 = c/ cos ζ is the phase
velocity of X waves, k = ω/c is the wave number, ω = 2πf
is the angular frequency, f is the temporal frequency, c is
the speed of sound or light, ζ (0 ≤ ζ < π/2) is the Axicon

angle [58], [59] of X waves, Jn(·) is the nth-order Bessel
function of the first kind, B(k) is any well-behaved func-
tion that could represent the transfer function of a prac-
tical acoustic transducer or electromagnetic antenna, and
a0 is a constant that determines the fall-off speed of the
high-frequency components of X waves, and n is termed
the “order” of the waves.

With an infinite aperture, X waves can propagate to an
infinite distance without changing their wave shapes. If the
aperture is finite, these waves have a large depth of field
[24], [25]. For example, if the diameter of the aperture is
D, the depth of field of the waves is given as follows [24],
[30]

Zmax =
D

2
1√(

c1
c

)2 − 1
=
D

2
cot ζ. (2)

If D = 50 mm and ζ = 6.6◦, the depth of field is about
216 mm (the depth of field is defined as the axial distance
from the surface of transducer where the peak pressure of
the wave drops to −6 dB of that at the surface).

Summing the X waves in (1) over the index, n, broad-
band limited diffraction array beams [29]–[31] are obtained
that are also limited diffraction solutions to the isotropic-
homogeneous wave equation:

ΦArray(~r, t) =
∞∑

n=−∞
ine−inθΦXn(r, φ, z − c1t)

=

∞∫
0

B(k)

[ ∞∑
n=−∞

inJn(kr sin ζ)ein(φ−θ)

]
(3)

× e−k[a0−i cos ζ(z−c1t)]dk,

where 0 ≤ θ < 2π is a free parameter and the subscript
“Array” represents “array beams.” Because of the follow-
ing equality [60],

∞∑
n=−∞

inJn(kr sin ζ)ein(φ−θ) = ei(kr sin ζ) cos(φ−θ),
(4)

the array beams can be written as [29]:

ΦArray(~r, t) =
1

2π

∞∫
0

T (k)eikxx+ikyy+ikzze−iωtdk

=
1

2π

∞∫
−∞

T (k)H(k)eikxx+ikyy+ikzze−iωtdk,
(5)

where

T (k)H(k)
c

eikxx+ikyy+ikzz, (6)

is the Fourier transform (spectrum) of the array beams in
terms of time,

H
(ω
c

)
=

{
1, ω ≥ 0
0, ω < 0

(7)
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Fig. 1. Geometry of a 3D pulse-echo imaging system with limited
diffraction beams.

is the Heaviside step function [61], T (k) = 2πB(k)e−ka0 ,
and 

kx = k sin ζ cos θ = k1 cos θ,
ky = k sin ζ sin θ = k1 sin θ,
kz = k cos ζ =

√
k2 − k2

1 ≥ 0,
(8)

and where

k1 =
√
k2
x + k2

y = k sin ζ. (9)

B. Approximate Constructions of Images
with a Pulse-Echo System

In the following discussion the relationship between the
signals backscattered from an object and a 3D or 2D im-
age reconstruction of the object is established using the
broadband limited diffraction array beams (5). Although
the exact array beams as set forth in (5) and the use of
an infinite aperture are assumed in the derivation, good
images can be constructed using a transducer with a finite
aperture within the depth of field of the beams (2).

1. 3D Image Construction: Let’s assume that a 3D ob-
ject, f(~r) (reflection coefficient), is composed of randomly
positioned point scatterers embedded in a uniform back-
ground supporting a constant speed of sound (Fig. 1) and
a broadband circular 2D array transducer is excited to pro-
duce a plane wave pulse (broadband) that is expressed as
follows (derived from (4) of [24])

P (z − ct) =
1

2π

∞∫
−∞

A(k)eik(z−ct)dk

=
1

2π

∞∫
−∞

A(k)eikze−iωtdk,

(10)

where

A(k)eikz

c
(11)

is the temporal spectrum of the plane wave pulse.
If the same array transducer is used as a receiver and

is weighted to produce a limited diffraction array beam
response with the parameters kx and ky, the received signal
for the wave scattered from a point scatterer located at
~r = (x, y, z) is given by the following convolution [(6) and
(11)]:

R
(one)
kx,ky,k′z

(t) = f(~r)[P (z − ct) ∗ ΦArray(~r, t)]

=
1

2π

∞∫
−∞

A(k)T (k)H(k)
c

f(~r)eikxx+ikyy+ik′zz

(12)

× e−iωtdk,

where “∗” represents the convolution with respect to time
and where k′z = k+kz, and the superscript “(one)” means
“one point scatterer.” This uses the fact that the spectrum
of the convolution of two functions is equal to the product
of the spectra of the functions.

Because the imaging system is linear, the received signal
for echoes returned from all random scatterers within the
object f(~r) is a linear superposition of those echo signals
from individual point scatterers as follows:

Rkx,ky,k′z (t) =
1

2π

∞∫
−∞

A(k)T (k)H(k)
c

×

∫
V

f(~r)eikxx+ikyy+ik′zzd~r

 e−iωtdk
(13)

=
1

2π

∞∫
−∞

A(k)T (k)H(k)
c

F (kx, ky, k′z)e
−iωtdk.

The 3D Fourier transform pair in this expression is defined
as follows:

F (kx, ky, kz) =
∫
V

f(~r)eikxx+ikyy+ikzzd~r

and (14)

f(~r) =
1

(2π)3

∞∫
−∞

∞∫
−∞

∞∫
−∞

F (kx, ky, kz)

× e−ikxx−ikyy−ikzzdkxdkydkz,

and where V is the volume of the object f(~r).
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From (13) the temporal Fourier transform (spectrum)
of the received signal is obtained:

R̃kx,ky,k′z (ω) =
A(k)T (k)H(k)

c2
F (kx, ky, k′z)

or (15)

FBL(kx, ky, k′z) = c2H(k)R̃kx,ky,k′z (ω),

where H(k) is used to indicate that only positive values of
k are used and thus it can be applied to either side of the
equation (for the convenience of presentation, it is used
with, R̃kx,ky,k′z (ω)), and

FBL(kx, ky, k′z) = A(k)T (k)F (kx, ky, k′z) (16)

is a band-limited version of the spatial Fourier transform
of the object function, the subscript “BL” means “band-
limited”, and the combined transmit and receive transfer
function, A(k)T (k), of the array transducer can be as-
sumed, for example, to be proportional to the following
Blackman window function [24], [62]:

W (k) =

{
0.42− 0.5 cos πkk0

+ 0.08 cos 2πk
k0
, 0 ≤ k ≤ 2k0

0, otherwise
,

(17)

where k0 = 2πf0/c and f0 is the center frequency. The
−6 dB bandwidth of W (k) is about 81% of its center fre-
quency, which is typical for medical ultrasound.

By taking the inverse transformation of (16), an approx-
imation of the object function can be constructed using the
definition of the spatial Fourier transform in (14)

f(~r) ≈ fBL(~r) ≈ fPart
BL (~r)

=
1

(2π)3

∞∫
−∞

dkx

∞∫
−∞

dky

∫
k≥
√
k2
x+k2

y

dk′z

× FBL(kx, ky, k′z)e
−ikxx−ikyy−ik′zz, (18)

where the first approximation is due to the finite band-
width of received signals and the second approximation is
due to the requirement that k ≥

√
k2
x + k2

y must be satis-
fied. Thus, only part (indicated by the superscript “Part”)
of the spatial Fourier transform of the object function is
known [see the area inside the spherical cone in Fig. 2(a)
and (b)]. It can be shown from computer simulation (see
the following sections) and experiment [56] that these ap-
proximations do not significantly affect the quality of con-
structed images as compared to those obtained with con-
ventional dynamically focused pulse-echo imaging systems.

With (8), the above equation (18) can be written in
terms of the other set of independent variables, k, ζ, and θ

f(~r) ≈ c2

(2π)3

∞∫
0

k2dk

π∫
−π

dθ

π/2∫
0

sin ζ(1+cos ζ)dζR̃′k,ζ,θ(ω)

e−ikr sin ζ cos(φ−θ)−ik(1+cos ζ)z, (19)

Fig. 2. 3D spatial Fourier-domain coverage of a pulse-echo imaging
system where a plane wave pulse (broadband) is used in transmission
and limited diffraction beams of different parameters are used in
reception. (a) 3D view and (b) view at the kx−k′z plane. ka, kb, and
kc are three different values of k.

where R̃′k,ζ,θ(ω) = R̃kx,ky,k′z (ω),

dkxdkydk
′
z =

∣∣∣∣∂(kx, ky, k′z)
∂(k, ζ, θ)

∣∣∣∣ dkdζdθ, (20)

and where

∂(kx, ky, k′z)
∂(k, ζ, θ)

=

∣∣∣∣∣∣∣
∂kx
∂k

∂kx
∂ζ

∂kx
∂θ

∂ky
∂k

∂ky
∂ζ

∂ky
∂θ

∂k′z
∂k

∂k′z
∂ζ

∂k′z
∂θ

∣∣∣∣∣∣∣ = k2 sin ζ(1 + cos ζ)
(21)

is the Jacobian determinant [63]. For a practical array
transducer of a finite diameter, D, the depth of field of
the array beams is determined by (2). If one is interested
in objects within a given depth of field, Zmax, the corre-
sponding Axicon angle, ζmax ≤ π/2, can then be calcu-
lated. In this case, the integration over ζ in (19) should be
from 0 to ζmax. As shown in Fig. 2, ζmax determines the
maximum open angle of the spherical cone.

If the object function f(~r), is real, which is the case in
most applications, the following is true from (14)

F (−kx,−ky,−k′z) = F ∗(kx, ky, k′z), (22)

where the superscript “∗” means complex conjugate. In
this case, the spatial Fourier transform of the object func-
tion in the lower Fourier space (k′z < 0) is also known.

2. 2D Image Constructions: A 2D image in any orien-
tation (including both B-mode and C-mode images) can
be readily obtained if a 3D image is constructed with (18)
or (19). However, 3D imaging is more complex and gener-
ally requires more computation. In the following, formulas
that are simplified from (18) and (19) and are suitable for
conventional B-mode imaging and a nonconventional C-
mode imaging (“nonconventional” means that the imaging
is applicable only for an isolated thin-layer object, such as
a film, that has a thickness much smaller than a wave-
length) will be derived. In B-mode imaging, objects are
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assumed to be independent of y (along the elevation direc-
tion), and in C-mode imaging, objects are assumed to be
a thin layer located at an axial distance z = z0 away from
the transducer, where z0 is a constant.

C-mode imaging assumes the object function f(~r) in
(13) represents a thin layer that is in parallel with the
surface of a 2D array transducer. This is indicated math-
ematically as follows:

f(~r) = f (1)(x, y)δ(z − z0), (23)

where δ is the Dirac-Delta function and f (1)(x, y) is a
transverse object function. The received signal is then ex-
pressed as follows from (13):

R
(1)
kx,ky,k′z

(t)

=
1

2π

∞∫
−∞

A(k)T (k)H(k)
c

∫
S

f (1)(x, y)eikxx+ikyydxdy


× eik

′
zz0e−iωtdk

(24)

=
1

2π

∞∫
−∞

A(k)T (k)H(k)
c

F (1)(kx, ky)eik
′
zz0e−iωtdk,

where S is the area of the object and F (1)(kx, ky) is the
spatial Fourier transform of f (1)(x, y). As with (15) and
(16), we then have:

F
(1)
BL (kx, ky) = A(k)T (k)F (1)(kx, ky)

= c2H(k)R̃(1)
kx,ky,k′z

(ω)e−ik
′
zz0 . (25)

From (25), the 2D image of a thin-layer object can be con-
structed approximately with the 2D inverse spatial Fourier
transform as follows:

f (1)(x, y) ≈ f (1)
BL (x, y)

=
1

(2π)2

∫
√
k2
x+k2

y≤k

∫
F

(1)
BL (kx, ky)e−ikxx−ikyydkxdky.

(26)

Equation (26) can be evaluated by either fixing the wave
number (monochromatic), k = k0 = 2πf0/c, where f0 is
the center temporal frequency of the pulse-echo system,
or fixing the Axicon angle, ζ = ζmax, and then changing
k (broadband). For the monochromatic case, k = k0, we
have:

f (1)(x, y) ≈ c2

(2π)2

∫
√
k2
x+k2

y≤k0

∫ [
R̃

(1)
kx,ky,k′z

(ω0)e−ik
′
zz0
]

× e−ikxx−ikyydkxdky, (27)

where ω0 = k0c. If ζ = ζmax is fixed, from (8), we obtain

f (1)(x, y) ≈ c2 sin2 ζmax

(2π)2

·
∞∫

0

kdk

π∫
−π

dθ
[
R̃

(1)′

k,ζmax,θ
(ω)e−ik(1+cos ζmax)z0

]
× e−ikr sin ζmax cos(φ−θ), (28)

where R̃
(1)′

k,ζ,θ(ω) = R̃
(1)
kx,ky,k′z

(ω). Notice that in the
monochromatic case, if the aperture is finite, there may
be many points in the space where the transmit beam is
zero in amplitude due to the interference of edge waves.
However, the influence of edge wave can be reduced dra-
matically with an aperture weighting such as the cosine
weighting at the expense of reduced effective aperture size.

To construct B-mode images, it is assumed that the
object function f(~r) is given by f(~r) = f (2)(x, z). That is,
the object is uniform along the y direction. In this case,
it is not necessary to weight array transducers in the y
direction, and thus a 1D array transducer instead of a 2D
array can be used.

From (5), broadband layered array beams can be de-
rived by setting the free parameter, ky, to zero [29]–[31]

ΦLayer(x, z, t) =
1

2π

∞∫
−∞

T (k)H(k)eikxx+ikzze−iωtdk,
(29)

where the subscript “Layer” represents “layered array
beams,” k′z = k + kz, and where{

kx = k sin ζ
kz =

√
k2 − k2

x = k cos ζ ≥ 0
(30)

is a special case of (8) with θ ≡ 0.
From (13), the resulting received signal is as follows:

R
(2)
kx,k′z

(t)

=
1

2π

∞∫
−∞

A(k)T (k)H(k)
c

∫
S

f (2)(x, z)eikxx+ik′zzdxdz


× e−iωtdk

(31)

=
1

2π

∞∫
−∞

A(k)T (k)H(k)
c

F (2)(kx, k′z)e
−iωtdk,

where F (2)(kx, k′z) is the spatial Fourier transform of
f (2)(x, z) and “S” is an area in the x− z plane. [Because
k′z ≥ k (k ≥ 0), the spatial Fourier transform of f (2)(x, z)
is known only in the area shown in Fig. 2(b).]

If f(~r) is also a function of y, the f (2)(x, z) in (31) is
an effective 2D object function that is given by:

f (2)(x, z) =

∞∫
−∞

f(~r)dy. (32)
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In most B-scan systems, beams are focused with a lens in
the elevation direction (y direction), the slice thickness is
quite small at focus and the effective 2D object function
in (32) can be written as follows:

f (2)(x, z) ≈ f(x, y0, z)dy, (33)

where y0 is the center plane of the slice defined by the
elevation focus and dy is the slice thickness (notice that
the focusing in the y direction will not affect the layered
array beams in the x direction [29] and Fig. 5 in [20]).

From (31), it follows:

F
(2)
BL (kx, k′z) = A(k)T (k)F (2)(kx, k′z) = c2H(k)R̃(2)

kx,k′z
(ω),
(34)

where R̃
(2)
kx,k′z

(ω) is the temporal Fourier transform of

R
(2)
kx,k′z

(t). The effective object function can be constructed
approximately by inverse spatial Fourier transformation of
F

(2)
BL (kx, k′z) in (34):

f (2)(x, z) ≈ f (2)
BL (x, z) ≈ f (2)Part

BL (x, z)

=
1

(2π)2

∞∫
−∞

dkx

∫
k≥|kx|

dk′zF
(2)
BL (kx, k′z)e

−ikxx−ik′zz.
(35)

Using (30), (35) can be written as:

f (2)(x, z) ≈ c2

(2π)2

∞∫
0

kdk

π/2∫
0

(1 + cos ζ)dζ

× R̃(2)′

k,ζ (ω)e−ikx sin ζ−ik(1+cos ζ)z. (36)

III. Computer Simulations

In the following, simulations of both 2D C-mode and 3D
pulse-echo imaging are described. 2D B-mode imaging is
simulated with parameters corresponding to experiments
[56]. In fact, 2D B-mode imaging is a special case of 3D
[compare (19) and (36)] but using a conventional linear
array and simpler electronics. In the following simulations,
Rayleigh-Sommerfeld diffraction formula [24], [64] is used.

In the simulations, we assume that the transducer is
a circular 2D array (Fig. 1). The diameter of the trans-
ducer, D, is 50 mm. The transducer is broadband and its
center frequency is 2.5 MHz. The bandwidth of the trans-
ducer is about 81% of the center frequency [assume that
the combined transmit and receive transfer function is pro-
portional to the Blackman window function given in (17)]
[24]. The background medium is assumed to be water that
has a speed of sound of 1500 m/s giving a wavelength of
0.6 mm at the center frequency. The objects are assumed
to be composed of point scatterers. The inter-element dis-
tance of the array transducer is assumed to be 0.3 mm
in both x and y directions. In transmission, all the array
elements are connected electronically to transmit a plane

wave pulse (broadband). Echoes from objects (Fig. 1) are
received with the same array that is weighted to produce
limited diffraction receptions. By choosing a pair of spatial
weighting frequencies, kx and ky, one obtains the spatial
Fourier transform of the object function evaluated at these
frequencies [see (13) for 3D and (24) for 2D] (this is simi-
lar to the frequency and phase encoding in MRI (magnetic
resonance imaging) [65], [66]). Given kx and ky, k′z is de-
termined by k that is related to the temporal frequency by
k = 2πf/c.

To use the FFTs and IFFTs directly, kx and ky are cho-
sen at rectangular grids. The temporal spectra [(15) and
(25)] of the received signals are calculated by the FFTs for
each pair of kx and ky. Using the nearest-neighbor inter-
polation [67], the Fourier transform of the object functions
at k′z can be determined with the formula

k′z = k + kz = k +
√
k2 − k2

x − k2
y (37)

for 3D image constructions. For 2D C-mode imaging, the
following formula (27) (monochromatic or fixed frequency)

k′z = k0 +
√
k2

0 − k2
x − k2

y (38)

or (28) (broadband or fixed Axicon angle)

k′z = k(1 + cos ζ) (39)

is used in the interpolation. In the broadband 2D C-mode
imaging, a short time gate (a Blackman window function
having a width of 2.4 µs) is applied to the received signals
to select a layer at z = z0.

IV. Results

Results of both 2D C-mode and 3D pulse-echo imaging
are given in the following. These results indicate that the
approximations (18) due to a finite temporal bandwidth
and limited spatial Fourier-domain coverage that are typi-
cal in medical ultrasonic imaging do not significantly affect
the quality of constructed images in terms of spatial reso-
lutions, sidelobes, and contrast.

For 2D C-mode imaging, single layer objects used for
the constructions are shown in Figs. 3(a) and (b). These
objects are located at z = z0 and are composed of either a
single point scatterer [Fig. 3(a)] on the axis of the trans-
ducer or 24 point scatterers forming a stacked letter “L”
[Fig. 3(b)]. The dimensions of the objects are shown in
Fig. 3. Images constructed with (28) (broadband—with
a fixed ζ) at several axial distances are shown in Fig. 4.
With the parameters given in Fig. 4, the depth of field of
the limited diffraction array beams (5) or X waves (1) is
about 216 mm (2). At the boundary of the depth of field,
it is seen that images start to degrade (see images at z0 =
200 mm in Fig. 4).

To see the sidelobes of the constructed images, line plots
along the x axis of the single point scatterer (PSF or point
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Fig. 3. Single-layer objects (lay in a plane perpendicular to the beam
axis) for 2D C-mode imaging. (a) Single point scatterer. (b) Stacked
letters “L” consisting of multiple point scatterers.

Fig. 4. Constructed 2D C-mode images of the single-layer objects.
Panels in the top, middle, and bottom rows correspond to images
constructed at the axial distances, z0 = 30, 100, and 200 mm, re-
spectively. Panels on the left and right columns are constructed im-
ages of the single point scatterer and stacked “L” corresponding to
Figs. 3(a) and (b), respectively. Absolute values of the real part of
the constructed images are shown. Transducer parameters are given
on the top of the images. The circle surrounding each image indicates
the area of transducer aperture.

Fig. 5. (a) Line plots of the constructed 2D C-mode images of the
point scatterer in the left column of Fig. 4 along the x axis at
three axial distances: z = 30 (solid lines), 100 (dotted lines), and
200 mm (dashed lines). These plots are obtained with a fixed Axicon
angle, ζ = 6.6◦. (b) Line plots of constructed 2D C-mode images
(not shown) of the point scatterer with a fixed temporal frequency
(2.5 MHz) but varying ζ within 6.6◦. The plots have the same format
as those in Panel (a). The unit of vertical axes is dB

Fig. 6. 3D objects for 3D image constructions. (a) A three-layer ob-
ject consisting of 9 point scatterers. The separation between layers
is 3 mm. (b) A 6 mm diameter sphere of random point scatterers.
(c) 5 cystic spheres embedded in a background of random scatterers.
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spread function) are shown in Fig. 5(a). For comparison,
line plots of images of the same point scatterer constructed
with (27) for a fixed frequency, k0 = 2πf0, where f0 =
2.5 MHz (monochromatic), are shown in Fig. 5(b). In this
case, the lateral resolution of images decreases with the
increase of depth (no longer limited diffraction). This is
due to the change of the Axicon angle, ζ, as kx and ky
change.

Three 3D objects are used for 3D image constructions
(Fig. 6). The first is an object consisting of 9 point scatter-
ers in 3 layers separated by 3 mm between the layers. The
geometry of each layer is shown in Fig. 6(a). The second is
a sphere of radius of 3 mm [Fig. 6(b)]. It consists of numer-
ous randomly positioned point scatterers and its center is
on the axis of the transducer. The last object consists of 5
cystic spheres of different diameters embedded in random
scattering background [Fig. 6(c)].

Images of the 3–layer object constructed with (18) or
(19) are shown in Fig. 7. Both 3D and 2D views are pre-
sented. It is seen that the lateral resolution of the con-
structed images degrades with depth. This is due to the
fact that smaller Axicon angles have to be used to increase
the depth of field (2) of limited diffraction beams [(1) and
(5)] at larger depths. Line plots along the x and z axes
are shown in Figs. 8(a) and (b), respectively. From both
Fig. 7 and Fig. 8(b), it is seen that the edge waves of the
unshaded transmit plane wave produce artifacts behind
the main images near the axis of the transducer. The edge
waves can be reduced by a proper aperture weighting of the
transmission aperture and then unshade the constructed
images to recover from the weighting effects (assume that
there are no zeroes in the weighting functions).

Constructed 3D images of the sphere of random scatter-
ers are shown in Fig. 9. Similar to Fig. 7, lateral resolution
of the images in Fig. 9 degrades with depth. The formula
used for the constructions is the same as that for Fig. 7.
Line plots of the constructed images of the sphere along
the x and z axes through the center of the sphere are shown
in Figs. 10(a) and (b), respectively.

Images of 5 cystic spheres constructed with (18) or (19)
are shown in Fig. 11. The constructed images are dis-
played at 3 perpendicular planes (x, y, and z) intersected
at the center of the center sphere. From Fig. 11, it is seen
that images constructed with the new method also have
a high contrast (notice that images in this figure is log
compressed).

V. A Suggested Imaging System

The theory of the new imaging method developed in
the previous sections can be implemented with a suggested
system described in the following for 3D high frame rate
imaging [(18) or (19)]. For 2D B-mode imaging [(35) or
(36)], the system can be scaled down by one dimension
(setting the free parameter, ky, to zero), which greatly
simplifies both the transducer and electronics required by
the system (replacing the 3D IFFT with 2D and using a
1D array transducer).

To illuminate objects such as biological soft tissues
within a finite aperture and a depth of interest (e.g.,
200 mm in medical ultrasound), a uniform plane wave
pulse (broadband) is transmitted by a 2D array transducer
with all of its elements connected together electronically
(Fig. 12). The plane wave may be weighted near the edges
(heavy weighting may reduce the effective transducer aper-
ture and thus reduce the effective viewing area) to reduce
edge waves. After images are constructed, the weighting
effects can be compensated with the inversion of the trans-
mit weighting function.

Waves scattered from the objects are received with
the same array transducer that is used in transmission.
Signal from each element is connected to a T/R (trans-
mit/receive) switch and then pre-amplified and compen-
sated for attenuation with a TGC (time-gain control) chip.
The received echo signals are gated so that a slice of tissue
(along the z direction) of thickness, dz, can be selected.
The gated signals are then weighted with either grid ar-
ray beams (5) for 3D or layered array beams (29) for 2D
B-mode imaging to produce A-lines. The weightings are
simple cosine and sine functions and can be approximated
with piecewise steps (the step size is determined by the
inter-element distance of the array transducers). To use
the FFT and IFFT algorithms directly, the free parame-
ters of the limited diffraction beams, kx and ky, are chosen
so that they fall exactly at the rectangular grids of the spa-
tial Fourier domain (Fig. 2) of the objects. The sampling
intervals of kx and ky are determined by the dimensions,
dx and dy, of constructed images in the x and y direc-
tions, respectively (i.e., ∆kx ≤ 2π/dx and ∆ky ≤ 2π/dy).
The number of samples, Nx and Ny, in these directions
are determined by the spacing of the constructed images
in the corresponding directions. The acquired A-lines are
digitized with A/D converters at a rate that satisfies the
Nyquist sampling theorem [62] and their temporal spectra
can be obtained with DSP chips or ASIC (application spe-
cific integrated circuits). The Fourier transform of objects
at the equal-distance intervals along the k′z direction are
obtained from the discrete temporal spectra of the A-lines
with the nearest-neighbor interpolation using the formula:

k =
k′2z + k2

x + k2
y

2k′z
, k′z ≥

√
k2
x + k2

y. (40)

At points where (40) is not satisfied, the Fourier space is
simply filled with zeroes. Similar to kx and ky, the sam-
pling interval along k′z [(18) and (35)] is determined by
the inversion of the thickness of constructed images (i.e.,
∆k′z ≤ 2π/dz), and the number of samples in the z di-
rection, Nz, is determined by the step size of the con-
structed images in this direction. Because object functions
are assumed to be real, their spatial Fourier transform at
k′z < 0 (lower part of Fig. 2) can be determined from that
at k′z ≥ 0 (22). The formula (40) can be implemented with
a lookup table stored in a ROM (read-only memory) or an
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Fig. 7. Constructed 3D images of the three-layer object in Fig. 6(a). Panels in the left column are 3D volume rendered images with a threshold
of 0.1 (maximum is 1.0). Images are rendered with the commercial software package ANALYZEr (Mayo Clinic, Rochester, MN.). The size
of constructed volumes is 50 × 50 × 15.36 mm3. Transducer is assumed to be on top of the volumes. The three layers of the constructed
images are displayed separately on the right hand side of the volume rendered images. These layers correspond to those in Fig. 6(a). Panels
in the top, middle, and bottom rows correspond to the axial distances of the center of the object at z = 30, 100, and 200 mm, respectively.

FPGA (field programmable array), to generate necessary
k values for the interpolations. After obtaining the spatial
Fourier transform of the object functions at all rectangu-
lar grids of kx, ky, and k′z, images are constructed by DSP
chips or ASIC that perform a 3D IFFT.

The beamforming method above is completely differ-
ent from the one (dynamic focusing) currently used in all
2D B-mode and 3D imaging [44]–[46]. The advantages of
the FFT-based beamformer are low cost and high speed.
Because only one transmission is required to construct im-
ages, the theoretical frame rate can be as high as 3750
frames/second for biological soft tissues at a 200 mm
depth. In practice, the frame rate will be limited by the
speed of the electronics, DSP or ASIC chips, and the speed
to process the large amount of 3D data for display (such
as volume rendering and surface extraction, etc.), as well
as the monitor refresh rate. The potential high frame rate
imaging will be less subject to motion artifacts of fast mov-
ing objects such as the heart leaflet and will make 3D flow
vector imaging or angiography possible [42].

VI. Discussion

A. Resolutions

From Figs. 5 and 8, it is seen that the resolutions of
images constructed with the new method are high (the
theoretical diffraction-limited −6 dB lateral beamwidth of
a focused piston beam at focus is given by 0.71λz/(D/2)
(see p. 425 of [4]), which is 5.68λ for D = 50 mm and
z = 200 mm). The −6 dB resolutions of both 2D C-mode
and 3D imaging at three axial distances from the trans-
ducer are listed in terms of the wavelength (λ = 0.6 mm)
in Table I. With a fixed Axicon angle, ζ = 6.6◦, the depth
of field of the limited diffraction beams given by (2) or (5)
is also fixed. This allows a nearly constant lateral resolu-
tion over a large depth of interest in 2D C-mode imaging
[Figs. 4 and 5(a)]. If the temporal frequency is fixed at
f0 = 2.5 MHz (monochromatic) but the Axicon angle is
allowed to vary, 0 ≤ ζ ≤ ζmax = 6.6◦, the lateral res-
olution of 2D C-mode images changes significantly with
the axial distance [Fig. 5(b)]. Notice that the constraint,
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TABLE I
−6 dB Lateral and Axial Beam-Widths (Resolution) of Constructed Images of a Point Target (Point Spread Function) in

Terms of Wavelength, λ. For Comparison, the Theoretical Diffraction-Limited −6 dB Lateral Beam-Widths of a Focused

Piston Transducer (diameter D=50 mm) at Focus are also Listed. As the Axicon Angle (ζ < π/2) Increases,

One can Expect That the Lateral Resolution of Constructed Images will Approach to the Diffraction Limit [56].

2D C-Mode Imaging

Fixed ζ or Monochromatic 3D Focused piston
depth of field (f0 = 2.5 MHz) imaging (diffraction limit)

Lateral z = 30 mm 4.58λ 3.75λ 1.25λ 0.85λ
resolution z = 100 mm 4.58λ 6.25λ 3.33λ 2.84λ

z = 200 mm 5.42λ 8.75λ 6.67λ 5.68λ

Axial z = 30 mm N/A N/A ≤ 0.833λ
resolution z = 100 mm N/A N/A ≤ 0.833λ

z = 200 mm N/A N/A ≤ 0.833λ

ζmax = 6.6◦, is used to keep the number of samples con-
stant in the Fourier space (assume that the distance be-
tween samples is the same) for both the monochromatic
(varying ζ) and broadband (fixed ζ) 2D C-mode imaging.

In 3D image constructions (Figs. 7 to 11), the maximum
Axicon angle, ζmax, is determined by the formula:

ζmax = tan−1
(

0.926
D

2z0

)
, (41)

where z0 is the axial distance between the transducer and
the center of objects, and the constant, 0.926, is used to
allow the actual depth of field to be a little larger than
z0. (Actually, from the experiment [56] one sees that a
constant that is much larger than 0.926 can be used to en-
hance the lateral resolution without degrading image qual-
ity. With this technique, the lateral resolution of the 3D
images may be more close to the diffraction limit given
above and listed in Table I. However, a larger ζ requires
a greater amount of computation in 3D simulation.) For
z0 = 30, 100, and 200 mm, ζmax = 37.6◦, 13.0◦, and 6.60◦,
respectively. From (8), we see that a larger ζmax will allow
larger kx and ky for a given transducer bandwidth. The
lateral resolution enhancement with the decrease of the
axial distance, z0 (or the increase of the maximum Axicon
angle, ζmax), is clearly seen from Figs. 7 and 8 and Table I.

B. Sidelobes

Sidelobes of constructed 2D C-mode and 3D images are
shown in Figs. 5, 8, and 10. With the new method, side-
lobes of constructed images decrease with the sampling
intervals, ∆kx, ∆ky, and ∆k′z, in the spatial Fourier do-
main. Sidelobe levels for 2D C-mode imaging shown in
Fig. 5 are achieved with ∆kx = ∆ky = 2π/100 mm−1.
For 3D imaging, ∆kx = ∆ky = 2π/60 mm−1 and ∆k′z =
2π/15.36 mm−1. A recent study by the author shows that
sidelobes can also be greatly reduced (almost doubled in
dB scale) with a cosine weighting at the receiving aper-
ture. However, a heavier aperture weighting is at the ex-
pense of the lateral resolution and lateral field of view of
constructed images.

C. Depth of Field

Depth of field (2) of limited diffraction array beams are
the same as that of X waves for a given aperture size and
Axicon angle [30], [31]. In 3D imaging, the minimum depth
of field of the beams can be adjusted to the depth of in-
terest to maximize the lateral resolution (this is the case
for Figs. 7 to 11). The depth of field for the plane wave
pulse is usually much larger than that of limited diffraction
beams and thus needs not to be considered. If one wishes
to fix the minimum depth of field, or the maximum Axicon
angle, the volume of the spherical cone [Fig. 2(a)] in the
spatial Fourier domain will remain the same. This will re-
sult in a nearly uniform lateral resolution for constructed
images at all axial depths (see Fig. 4 and Table I).

D. Edge Waves

The influence of edge waves of unshaded plane wave
transmission is clearly seen near the axis of the transducer
(Figs. 7 to 10). The influence can be reduced dramatically
if the transmitting aperture is weighted properly (see Fig. 7
of [24]). After images are constructed, the influence of the
weighting can be compensated as was discussed in the pre-
vious sections.

E. Frame Rate

The new method has a potential for high frame rate
imaging (up to about 3750 frames/second for biological
soft tissues at a 200 mm depth). This is possible because
multiple transmissions of ultrasound beams are not nec-
essary to construct images. Multiple transmissions reduce
image frame rate due to the finite speed of sound of objects
such as biological soft tissues [45], [46]. The high frame
rate will reduce artifacts in imaging of fast moving objects
such as the heart and is particularly useful for diagnosing
congenital diseases of fetus hearts.
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F. 3D Blood Flow Vector Imaging

With the high frame rate capability of the new method,
two consecutive volumes of 3D RF (radio frequency) data
or images can be acquired and stored for speckle track-
ing analysis [42]. This enables 3D flow vector imaging,
which may overcome many problems associated with con-
ventional Doppler blood flow techniques [42].

G. Underwater Acoustic Imaging

In underwater acoustic imaging, objects are usually fur-
ther away from transducer as compared to those in medical
ultrasound [43]. Given a finite speed of sound of water, it
is difficult to construct images at a high frame rate with
conventional imaging methods. The new method proposed
in this paper offers an opportunity for high quality under-
water acoustic imaging at a high frame rate.

H. 2D Transducer Designs

For 2D C-mode or 3D imaging, a 2D array transducer
is required for the new method. The inter-element dis-
tances of the transducer along the x and y axes are de-
termined by the highest spatial frequencies in kx and ky,
respectively [62]. In current medical ultrasonic imaging,
lateral resolution is usually much lower than axial resolu-
tion, and therefore, maximum kx and ky are much smaller
than kmax. For example, if ζ ≤ ζmax = 6.6◦, from (8)
we obtain

√
k2
x + k2

y ≤ kmax sin ζmax = 0.115kmax, where
kmax is determined by the highest temporal frequency.
This means that the inter-element distance of the 2D array
can be much larger than that of a fully sampled 2D array
where the inter-element spacing is usually less or equal to
λmin/2 = π/kmax [33] for electronic steering. The large
inter-element distance reduces dramatically the number
of elements which is inversely proportional to the square
of the inter-element distance. High grating lobes resulted
from the large inter-element distance can be eliminated
with the sub-dicing technique used in commercial array
transducers.

I. 2D B-Mode Imaging

The new method has also been used for 2D B-mode
imaging [56]. In this case a commercially available 1D array
transducer is used to replace the 2D array in Figs. 1 and 12.
The 1D array may focus in the y direction with a physical
lens to obtain a thin slice thickness near the focus [20],
[29]. The echo signals are weighted in the x direction to
produce broadband limited diffraction layered array beams
(29) [29]–[31]. Equation (35) or (36) is used to construct
2D B-mode images at a high frame rate. Compared to the
3D imaging system in Fig. 12, a 2D B-mode system is
greatly simplified since all the electronics are scaled down
by one dimension. The discussion above for the design of
2D array transducer applies also to that of 1D arrays for
2D B-mode imaging.

J. Beam Steering

Although steering is not necessary to construct either
2D or 3D images using the new method, beams of the
imaging system in Fig. 12 can be steered electronically to
increase image field of view. In this case, the inter-element
distance of the array transducer in the scan direction must
be smaller than or equal to λmin/2 to eliminate grating
lobes [33]. In the elevation direction, the inter-element dis-
tance can still be large. Linear time delays required for the
steering can be added in either the time domain or tempo-
ral frequency domain. Apparently, electronic steering in-
creases the system complexity.

A recent computer simulation by the author indicates
that a field of view which is much larger than the trans-
mission aperture can be obtained without beam steer-
ing if limited diffraction array beams are used in both
transmission and reception (see the following subsection),
even if both the transmission and reception apertures are
weighted with a cosine function to reduce sidelobes. This is
because the transmission and reception beams are always
in the same directions, which is different from the plane
wave transmission where objects lay outside of the trans-
mission aperture are not illuminated and thus no images
can be constructed for these objects.

K. Increasing Spatial Fourier-Domain Coverage

As shown in Fig. 2, only part of spatial Fourier domain
is acquired by the measured backscattered signals. Sev-
eral methods can be used to increase the Fourier-domain
acquisition and thereby increase image resolution. If the
imaging system in Fig. 1 is rotated around the object, the
spherical cone in Fig. 2 is rotated accordingly. Such rota-
tions increase the Fourier-domain acquisition, but compli-
cate the imaging system, reduce the system accessibility
to the human body, and reduce image frame rate.

Without rotating the imaging system, a more complete
spatial Fourier-domain coverage can also be obtained by
both transmitting and receiving limited diffraction beams.
If in (12) and (13) the plane wave pulse produced during
the transmission mode is replaced with limited diffraction
array beams, the received signal is as follows:

R
(PEa)
k′x,k

′
y,k
′
z
(t)

=
1

2π

∞∫
−∞

T 2(k)H(k)
c

∫
V

f(~r)eik
′
xx+ik′yy+ik′zzd~r

 e−iωtdk
(42)

=
1

2π

∞∫
−∞

T 2(k)H(k)
c

F (PEa)(k′x, k
′
y, k
′
z)e
−iωtdk,

where the superscript “(PEa)” means “pulse-echo with ar-
ray beams,” k′x = 2kx, k′y = 2ky, and k′z = 2kz. As with
(19), using (8), a 3D image construction is then obtained
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according to the following formula:

f(~r) ≈ 8c2

(2π)3

∞∫
0

k2dk

π∫
−π

dθ

π/2∫
0

sin ζdζR̃(PEa)′
k,ζ,θ (ω)

(43)

e−i2kr sin ζ cos(φ−θ)−i2kz cos ζ ,

where R̃(PEa)′
k,ζ,θ (ω) = R̃

(PEa)
k′x,k

′
y,k
′
z
(ω) is the temporal Fourier

transform of (42), and “≈” sign means approximation due
to the finite temporal bandwidth of practical systems. The
spatial Fourier coverage is shown in Fig. 13 that is the
upper half sphere when ζmax = π/2. If object functions
are real, the lower half of the Fourier space is also known
(22). For 2D B-mode imaging, (42) and (43) can be re-
duced to 2D in a way similar to that discussed above for
plane wave transmission [(29) to (36)]. (Notice that in 2D
cases, Soumekh [69] has developed a similar relationship
for phased-array imaging. However, in his method, beam
steering is required to construct images). Because multiple
transmissions are required to implement (42) and (43), the
frame rate drops significantly for 3D imaging. However, for
2D B-mode imaging, the same frame rate as that of cur-
rent commercial B-scanners can be achieved with simpler
electronics and beamformer. Because of the increased cov-
erage of the spatial Fourier domain, lateral resolution of
constructed images is increased. (A computer simulation
of a point spread function of a 2D B-mode imaging system
and an object consists of several point scatterers has been
performed recently by the author with the new method
and a great enhancement on lateral resolution has been
observed.)

If objects themselves emit waves (objects are radiation
sources) and limited diffraction array beams are used in
reception, a formula for the received signal that is similar
to (13) is given as follows:

R
(One-way)
kx,ky,kz

(t)

=
1

2π

∞∫
−∞

T (k)H(k)

∫
V

f(~r)eikxx+ikyy+ikzzd~r

 e−iωtdk
(44)

=
1

2π

∞∫
−∞

T (k)H(k)F (One-way)(kx, ky, kz)e−iωtdk,

where the superscript “One-way” means “receive-only.”
3D images can be constructed approximately (approxi-
mation is due to a finite temporal bandwidth) with the
following formula:

f(~r) ≈ c

(2π)3

∞∫
0

k2dk

π∫
−π

dθ

π/2∫
0

sin ζdζR̃(One-way)′
k,ζ,θ (ω)

(45)

e−ikr sin ζ cos(φ−θ)−ikz cos ζ ,

where R̃
(One-way)′
k,ζ,θ (ω) = R̃

(One-way)
kx,ky,kz

(ω) is the temporal
Fourier transform of (44). The spatial Fourier coverage

for (45) is still the upper half sphere shown in Fig. 13
if ζmax = π/2. However, the radius of the sphere is half of
that given by (43). For real object functions, the lower half
of the sphere is also known (22). This method may have
applications in remote sensing of radiating objects such as
those in space.

Finally, if the plane wave pulse in (10) is on the oppo-
site side of limited diffraction beam receiver (transmission
mode), the received signals are still given by (13) except
that the sign of k in the spatial Fourier transform of the
object functions is negative (i.e., k′z = kz−k). This moves
the spherical cone in Fig. 2 down by 2k along the k′z axis
and the apex of the cone is moving to the origin of the co-
ordinates. To construct 3D images, (18) can still be used
except that k′z has a new definition. However, (19) should
be modified to:

f(~r) ≈ c2

(2π)3

∞∫
0

k2dk

π∫
−π

dθ

π/2∫
0

sin ζ(1− cos ζ)dζR̃(T)′
k,ζ,θ(ω)

(46)

e−ikr sin ζ cos(φ−θ)−ik(cos ζ−1)z,

where the superscript “(T)” means “transmission” and
R̃

(T)′
k,ζ,θ(ω) = R̃

(T)
kx,ky,kz

(ω) is the temporal Fourier transform
of the received signal. 2D B-mode transmission images can
also be constructed with formulas similar to (29) to (36)
with the new k′z mentioned above. It is important to know
that the Fourier space coverage implied by (46) is much
smaller and incomplete as compared to those shown in
Fig. 2 because the top of the half spheres is always at the
origin of coordinates no matter what radii of the spheres
are and the spheres are not rotated around the origin. In
addition, (46) is only valid for waves scattered from ob-
jects and thus the direct incident wave should be removed
from the received signals. Moreover, transmission imaging
usually suffers from multiple reflections between transmit-
ter and receiver. To obtain a more complete coverage of
the Fourier space, the transducers should be rotated 360◦

around the objects (monochromatic waves can be used).
This is the traditional transmission tomography [55] and
may have severe image registration problem if the speed
of sound of objects is not uniform in all directions.

L. Interpolation-Free Versus
Fourier-Domain Interpolation

Image construction formulas such as (19) can be evalu-
ated directly with numerical integrations without any in-
terpolations. This is because the parameters, kx and ky, of
limited diffraction array beam can be calculated from (8)
for equal-space sampling along θ and ζ. Temporal FFT
gives samples directly at the equal-space intervals of k.
However, numerical integrations are slow and the nonuni-
form sampling in the (kx, ky, k′z)-space requires more sam-
ples to achieve the same quality in image construction [67].

To speed up the image construction, spatial Fourier
transform of the object functions at the rectangular grids
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Fig. 8. (a) Lateral line plots of constructed 3D images of the point
scatterer in the middle layer of the three-layer object along the x axis
at three axial distances: z = 30 (solid lines), 100 (dotted lines), and
200 mm (dashed lines). (b) Line plots of the constructed 3D images
of the same point scatterer but along the z axis. The vertical axes
are in dB scale.

Fig. 9. Constructed 3D images of a sphere (3 mm radius) of random
scatterers in Fig. 6(b). Panels in the left column are 3D volume
rendered images with a threshold of 0.1 (maximum is 1.0). The size
of constructed volumes is 50×50×15.36 mm3. Transducer is assumed
to be on top of the volumes. Transverse planes (parallel to the x− y
plane) of the constructed images through the center of the sphere
are shown on the right-hand side of the volume rendered images.
Panels in the top, middle, and bottom rows correspond to the axial
distances of the center of the sphere at z = 30, 100, and 200 mm,
respectively.

Fig. 10. (a) Lateral line plots through the center of the constructed
3D images of the sphere of random scatterers along the x axis at
three axial distances: z = 30 (solid lines), 100 (dotted lines), and
200 mm (dashed lines). (b) Line plots of the constructed images of
the same sphere but along the z axis. The vertical axes are in dB
scale.

of kx and ky is directly obtained by properly weighting
the array transducers. The spatial Fourier transform at
the equal-space intervals of k′z is then calculated with (40)
using the nearest-neighbor interpolations [67]. After the
spatial Fourier transform is known at all rectangular grids,
3D images are constructed with a 3D IFFT. This method
has been used to construct all the images in this paper
(Figs. 4, 7, 9, and 11).

M. Influence of Phase Aberration and Attenuation

The imaging method developed in this paper assumes
that there are no attenuation and phase aberration in the
objects. In addition, the objects are assumed to be com-
posed of point scatterers of no multiple scattering. These
conditions are similar to those assumed implicitly in all
conventional B-scanners (beams can only be focused per-
fectly in media where there are no phase aberration, multi-
ple scattering, and attenuation). Obviously, the new imag-
ing method will work the best under these ideal conditions.
Far away from these conditions, images are expected to
degrade. In the following, the influence of the non-ideal
conditions and methods for compensation are briefly dis-
cussed.

In commercial pulse-echo imaging systems, attenua-
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Fig. 11. Constructed 3D images of 5 cystic spheres (6, 5, 4, 3, and 2 mm in radius, respectively) embedded in a background of random
scatterers [see Fig. 6(c)]. The size of constructed volumes is 50 × 50 × 15.36 mm3. Transducer is assumed to be on top of the volumes.
Panels in the top, middle, and bottom rows correspond to the axial distances of the center of the central sphere at z = z0 = 30, 100, and
200 mm, respectively. Panels in the left column represent the transverse planes (parallel to the x − y plane) of the constructed images at
z = z0. Panels in the middle column are constructed images in the x− z plane. And panels in the right column are in the y − z plane. The
cross-sectional images are log compressed and the range is displayed from 0 to −20 dB.

tion of acoustic waves in tissues are compensated with
TGC (Fig. 12). The same technique can be applied to the
new 2D and 3D pulse-echo imaging method. Frequency-
dependent attenuation may cause the shift of temporal
spectrum to lower frequencies. Like the conventional B-
mode imaging, this may lower both lateral and axial reso-
lutions when imaging tissues at a larger depth. Although
we cannot avoid this problem, dynamic frequency tech-
nique that is used in commercial B-scanners can also be
applied to the new method to increase signal-to-noise ratio.
An experiment performed recently shows that the TGC
works very well for both the conventional and new meth-
ods [56].

Phase aberration of biological soft tissues may cause

distortion to images. Influence of phase aberration de-
pends on the size of transducers relative to its center
wavelength, and the distance of objects from the trans-
ducer, etc. Currently, efforts have been made by many re-
search groups to compensate for phase aberrations [68].
Techniques developed are also applicable to the new imag-
ing method. In addition, restricting the Axicon angle, ζ,
in (19), (36), and other image construction formulas may
also reduce the influence of phase aberration because ob-
jects are viewed within a smaller angle. However, as dis-
cussed before, smaller ζ results in a lower lateral resolu-
tion. This is similar to the dynamic aperture technique
used currently in commercial B-scanners to obtain images
of approximately uniform resolutions over the entire depth
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Fig. 12. A suggested 3D imaging system for implementing the new
method developed in this paper. For 2D B-mode imaging, ky ≡ 0
and a 1D array is used. In this case, aperture weightings are needed
only along the x axis, and the spatial 3D IFFT is simplified to 2D
[56]. (Notice that the A/D converters can also be moved to front of
the block, “aperture weighting” or “time gating,” in the diagram to
digitize signal from each element. In this case, multichannel digital
summations are required, which may increase system complexity.)

of interest (trade off lateral resolution near the surface of
transducers with lower influence of phase aberration at
these distances). An assessment of the influence of phase
aberration on the new imaging method has been performed
recently on data obtained from the experiment [57]. Re-
sults show that phase aberration has about the same in-
fluence on both the new and the conventional dynamic
focusing (delay and sum) imaging methods.

N. Other Applications

The method developed in this paper could also be
applied to electromagnetic (both broadband and narrow
band) and optical (narrow band) imaging because electro-
magnetic waves satisfy the same scalar wave equations as
the acoustic waves for most applications.

VII. Summary and Conclusions

A new 2D and 3D pulse-echo imaging method (Fourier
method) has been developed with limited diffraction
beams. This method has a potential to achieve a high im-
age frame rate (up to 3750 frames/s for biological soft tis-
sues at a depth of 200 mm) and can be implemented with
relatively simple and inexpensive hardware because the
FFT and IFFT algorithms can be used. Computer simu-
lation with the new method has been carried out to con-
struct 2D C-mode, 2D B-mode, and 3D images on vari-
ous types of objects. An experiment on an ATS 539 tis-
sue equivalent phantom (attenuation coefficient is about

Fig. 13. Spatial Fourier domain coverage for imaging of radiation
sources (k′ = k, k′x = kx, k′y = ky, k′z = kz, k′1 = k1) or for pulse-
echo imaging using limited diffraction array beams in both trans-
mission and reception (k′ = 2k, k′x = 2kx, k′y = 2ky, k′z = 2kz ,
k′1 = 2k1).

0.5 dB/MHz/cm) has been performed and 2D B-mode im-
ages have been constructed [56].

The results of the simulation and experiment have
shown that the new imaging method is robust and is not
sensitive to various limitations imposed by practical sys-
tems in medical ultrasound. The quality of images con-
structed with the new method is comparable to that ob-
tained with the conventional dynamic focusing method
(delay and sum [49]) in terms of spatial resolutions, side-
lobes, signal-to-noise ratio, and contrast. A new study with
the experiment data has demonstrated that the influence
of phase aberration is about the same on both methods
[57].

In addition, lateral resolution of images can be increased
greatly if limited diffraction array beams are used in both
transmission and reception (two-way imaging). In this
case, a larger image field of view can be obtained with-
out beam steering. Sidelobes of both the one-way (plane
wave transmission) and two-way imaging systems can be
reduced dramatically with an aperture weighting on lim-
ited diffraction array beams.

In conclusion, the new method is very promising for
high frame rate multidimensional imaging with low motion
artifacts. It could have an impact on future commercial
imaging systems because of its simplicity and potentials
for reduction of system cost. The new method can also be
applied to nonmedical areas such as remote sensing and
underwater acoustic imaging.
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