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Hôpital Bretonneau CHRU Tours

2 Bis Boulevard Tonnellé
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Abstract— This study concerns two issues. Firstly an equiva-
lence is given between the use of 1D Fourier-Bessel series and
the X Wave Transform, as applied to annular arrays and the
computation and tuning of linear fields. Secondly, an optimal
choice of modelling aperture in the Fourier-Bessel analysis is
suggested. The Fourier-Bessel approach is a numerical method
which has been developed and implemented for calculation and
tuning of linear lossless fields in both continuous wave and
pulsed wave cases. The X Wave Transform is a theoretical
mathematical method for expressing an arbitrary linear lossless
fields as a summation of weighted X Wave expansions. Our
discussion establishes a connection between these two studies,
showing that the numerical Fourier-Bessel approach is in the limit
equivalent to the analytical X wave approach to the description
of circular symmetric fields. Furthermore it suggests a numerical
optimisation of the Fourier-Bessel approach by implementing of a
one-off optimal modelling aperture which replaces the previous
iterative approach. Potential applications exist in the area of
optimal ultrasound field calculation and tuning, for example in
the study of contrast agent responses.

I. INTRODUCTION

We study here the connection between the use [1], [2]
of one dimensional Fourier-Bessel Series (FBS) [3], [4] and
the X Wave Transform (XWT) [5] with respect to circular
symmetric fields. In both cases the respective techniques allow
the propagated field to be described as a set of multifrequency
nondiffracting J0 Bessel beams [6], [7], with the Fourier-
Bessel approach representing a numerical implementation of
the theoretical X wave approach. Theoretically, nondiffracting
beams such as Bessel beams and X waves can propagate to
an infinite distance without spreading if they are produced
with an infinite aperture and energy. In practice, when the
aperture and energy are always finite, they still have a large
depth of field. Here we show that the FBS approach is an
equivalent numerical implementation to the XWT approach,
and a subsequent numerical optimisation of the FBS approach
is then also suggested. The practical relevance of the study
resides in the area of field calculation and tuning methods.

II. X WAVE THEORY

The circular symmetric wave equation in cylindrical coor-
dinates for source-free, lossless, and isotropic-homogeneous
media is given by[
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]
Φ(r, z, t) = 0 (1)

where Φ(r, z, t) denotes acoustic pressure at a spatial point
(r, z) and time t, z is the axial axis, and c is the speed of
sound in the medium. A solution to (1) is an 0th order X
wave [8] :

Xζ(r, z, t) =
∞∫
0

T0,ζ(k)Bk,ζ(r, z, t)dk

Bk,ζ(r, z, t) = J0(kr sin ζ)ejk cos ζ(z−c1t)

(2)

where T0,ζ(k) is the weighting function and Bk,ζ(r, z, t) is a
0th order Bessel beam solution to (1). The axial propagation
velocity c1 = c/ cos ζ is both the group and phase velocity
of the X wave (dω/dkz = ω/kz = c1 ≥ c, where kz =
k cos ζ), k = ω/c is the wavenumber, ω = 2πf is the angular
frequency, f is the temporal frequency, 0 ≤ ζ < π/2 is the
Axicon angle [9]–[11] of the X wave, J0(·) is the 0th order
Bessel function of the first kind, and T0,ζ(k) is a weighting
function which may be related to the transfer function of a
practical acoustic transducer for a given ζ.

Lu and Liu [5] considered the generalised solution Φ(r, z, t)
to equation (1) for all nonevanescent waves as the summation
of all possible 0th order X waves Xζ(r, z, t) in (2) integrated
over the free parameter ζ :

Φ(r, z, t) =

π/2∫
0

∞∫
0

T0,ζ(k)Bk,ζ(r, z, t)dkdζ (3)

and showed that any arbitrary (well behaved physically realis-
able) field Φ(r, z, t) could be represented in the form of (3) by
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appropriate selection of the weighting function T0,ζ(k). For a
given field this is found by inverting (3) to obtain

T0,ζ(k) =
k2c sin ζ cos ζH(k)

2π
×

∞∫
−∞

∞∫
0

Φ(r, z, t)B∗
k,ζ(r, z, t)rdrdt

(4)

where B∗
k,ζ(r, z, t) is the complex conjugate of Bk,ζ(r, z, t),

H(k) represents the Heaviside step function and T0,ζ(k) is
a special case of (26) in [5]. Equations (3) and (4) together
are the X Wave Transform, and we now aim to derive the
equivalence between it and the recent use of 1D Fourier-Bessel
series [3], [4] for circular symmetric fields [1], [2], [12]–[14].

III. FOURIER-BESSEL THEORY

A 1D Fourier-Bessel series [3], [4] for the variable r may
be used to model a transducer pressure function of the type
q(r, z0, ω), where q(r, z0, ω) denotes the radial component of
the field variation at an angular frequency ω. Using the series,
q(r, z0, ω) may be represented by

q(r, z0, ω) =
∑∞

i=1 Ai(ω, a)J0(αir)

αi = xi/a : J0(xi) = 0 : 0 ≤ r ≤ a
(5)

where J0(·) is the Bessel function of the first kind of order
zero. This series applies over the range 0 ≤ r ≤ a for any
choice of modeling aperture a, subject to q(r, z0, ω) at r = a
satisfying the necessary boundary condition q(a, z0, ω) = 0
arising from J0(αia) = J0(xi) = 0 for all i. (We use the term
aperture here to refer to the modeling radius a rather the full
diameter 2a). For annular arrays we may select any value a >
R since the (relative) surface pressure q(r, z0, ω) is taken as
zero by definition beyond the outer edge of the transducer r >
R in the plane of the transducer at z0 = 0. The roots xi in (5)
are the known infinite set of (real) monotonically increasing
positive solutions to J0(xi) = 0, and the corresponding scaled
Bessel basis parameters αi = xi/a cause the basis functions
J0(αir) in (5) to become orthogonal such that the weighting
coefficients Ai(ω, a) are given by

Ai(ω, a) =
2

a2J2
1 (xi)

a∫
0

q(r, z0, ω)J0(αir)rdr (6)

which, for the case of N -ring annular arrays with complex
ring quantisation levels qp(ω) for p = 1, . . . , N and inner and
outer radii r−p and r+

p become

Ai(ω, a) =
2

axiJ2
1 (xi)

N∑
p=1

[
r+
p J1(αir

+
p ) − r−p J1(αir

−
p )

]
qp(ω)

(7)
Then (see [1], [2], [12]–[14]), if q(r, z0, ω) is considered to
be a given (source) field at z0, then based on the form of (5)
and (2) one may propose a limited diffraction field estimate
q̂(r, z, ω) of q(r, z, ω) at distance z for frequency ω as

q̂(r, z, ω) =
∞∑

i=1

Ai(ω, a)J0(αir)ejz
√

k2−α2
i (8)

When αi ≤ k, then
√

k2 − α2
i is real and hence ejz

√
k2−α2

i

represents an oscillatory propagation to infinity in the z
direction since z is real. However, for the case of αi > k, then√

k2 − α2
i becomes imaginary and ejz

√
k2−α2

i corresponds
generally to evanescent waves. Therefore, since the scaling
parameters αi = xi/a in (5) increase monotonically with
index i for a given value of a, the evanescent feature means
that in practice we may truncate the infinite sum in i to only the
value l(k, a) at which

√
k2 − α2

i switches between being real
and imaginary. This limit may always be found numerically,
and was derived analytically in [2] as

l(k, a) ≈ ka/π + 1/4 (9)

Hence truncating the sum for i in (8) to the limit l(k, a) gives

q̂(r, z, ω) =
l(k,a)∑
i=1

Ai(ω, a)J0(αir)ejz
√

k2−α2
i (10)

and the inverse Fourier transform the time domain estimate

q̂(r, z, t) =
1
2π

∞∫
−∞

q̂(r, z, ω)e−jωtdω (11)

Notice here that since we have applied (6) over a generally
finite modelling aperture a, (10) represents a weighted set of
limited diffraction beams. However, if we allow a → ∞ then
each limited diffraction beam above becomes a nondiffracting
solution to (1) and the proposition is then that the estimate
q̂(r, z, ω) in the limit as a → ∞ becomes the true field
q(r, z, ω), namely

q(r, z, ω) = lima→∞
l(k,a)∑
i=1

Ai(ω, a)J0(αir)ejz
√

k2−α2
i (12)

with time domain q(r, z, t) from the inverse Fourier transform

q(r, z, t) =
1
2π

∞∫
−∞

q(r, z, ω)e−jωtdω (13)

IV. EQUIVALENCE BETWEEN FOURIER-BESSEL SERIES

AND X WAVE TRANSFORM

The aim now is to show that the estimate q̂(r, z, t) from
(11) as implemented numerically via (10) with a → ∞ does
in fact equate to the X wave solution (3) to (1), since then
we know that the exact field solution is being computed as
a → ∞. This will be illustrated by converting the discrete
sum in (12) into a continuous integral as a → ∞. Begin by
substituting from (6) into (12) to obtain

q(r, z, ω) = lima→∞
l(k,a)∑
i=1

2
a2J2

1 (xi)
· I(r, z, ω, a, i) (14)

where

I(r, z, ω, a, i) = ejz
√

k2−α2
i J0(αir)

a∫
0

q(r, z0, ω)J0(αir)rdr

(15)
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Then utilise the J1(xi) property from [3], [4]

J1(xi) →
√

2/πxi cos(xi − 3π/4) , i → ∞ (16)

to give the fraction in (14) as

2
a2J2

1 (xi)
→ xi

a
· π

a
· 1
cos2(xi − 3π/4)

(17)

The first term on the right hand side of above may be
recognised directly as αi = xi/a. The second and third terms
then benefit from utilising

J0(xi) →
√

2/πxi cos(xi − π/4) , i → ∞ (18)

such that the roots xi of J0(xi) = 0 become the roots of the
cosine function cos(xi − π/4) = 0, namely

xi → πi − π/4 , i → ∞ (19)

Then consider ∆αi = αi − αi−1 = (xi − xi−1)/a. From
above ∆αi → π/a as i → ∞ and xi − xi−1 → π such that
cos2(xi − 3π/4) → 1. Hence with αi = xi/a, (17) becomes

2
a2J2

1 (xi)
→ αi∆αi , i → ∞ (20)

such that

q(r, z, ω) = lima→∞
l(k,a)∑
i=1

I(r, z, ω, a, i)αi∆αi (21)

and then from ∆αi → π/a we have ∆αi → dα → 0 for
a → ∞ and the infinite discrete sum in (21) becomes the
continuous integral

q(r, z, ω) =

k∫
0

I(r, z, ω)αdα (22)

where I(r, z, ω) is I(r, z, ω, a, i) in (15) with a → ∞ and αi

replaced by α such that

I(r, z, ω) = ejz
√

k2−α2
J0(αr)

∞∫
0

q(r, z0, ω)J0(αr)rdr (23)

and in which the integration from α = 0 to α = k represents
the limit of the summation from i = 1 to i = l(k, a)
corresponding to all nonevanescent waves. Substituting from
(22) into (13) then gives

q(r, z, t) =

k∫
0

∞∫
−∞

α

2π
I(r, z, ω)e−jωtdωdα (24)

Then express (24) in terms of Axicon angles ζ and wavenum-
bers k = ω/c, rather than alpha values α and frequencies
ω by substituting α = k sin ζ, dα = k cos ζdζ, dω = cdk.
Also, for systems with positive frequency content only, insert
the Heaviside notation

∫ ∞
−∞ dk =

∫ ∞
0

H(k)dk may also be
inserted also to obtain

q(r, z, t) =

π/2∫
0

∞∫
−∞

k2c sin ζ cos ζH(k)
2π

I(r, z, ω)e−jkctdkdζ

(25)

Then substituting I(r, z, ω) with ω = kc and α = k sin ζ gives

q(r, z, t) =
π/2∫
0

∞∫
0

k2c sin ζ cos ζH(k)
2π

×

∞∫
0

q(r, z0, ω)J0(kr sin ζ)rdr×

J0(kr sin ζ)ejk cos ζ(z−c1t)dkdζ

(26)

which has the same structure as (3) with T0,ζ(k) given by

T0,ζ(k) =
k2c sin ζ cos ζH(k)

2π

∞∫
0

q(r, z0, ω)J0(kr sin ζ)rdr

(27)
in which an exact equivalence with (4) can be obtained
by substituting the inverse Fourier transform q(r, z0, ω) =∫ ∞
−∞ q(r, z0, t)ejωtdt and the identity ejzk cos ζ ·e−jzk cos ζ = 1

to give

T0,ζ(k) =
k2c sin ζ cos ζH(k)

2π

∞∫
−∞

∞∫
0

q(r, z0, ω)ejzk cos ζ×

J0(kr sin ζ)e−jk cos ζ(z−c1t)rdrdt
(28)

namely

T0,ζ(k) =
k2c sin ζ cos ζH(k)

2π
×

∞∫
−∞

∞∫
0

q(r, z, t)B∗
k,ζ(r, z, t)rdrdt

(29)

Note that this structure is precisely equivalent to the XWT
definitions (3) and (4). Hence we obtain the central result that
the Fourier-Bessel series is exactly equivalent to the X Wave
Transform in the case of implementing the FBS modelling
aperture a → ∞.

V. SUGGESTED OPTIMAL MODELLING APERTURE

The implemented field estimate q̂(r, z, t) given by (10) and
(11) requires a summation of terms from i = 1 to i = l(k, a),
where l(k, a) ≈ ka/π + 1/4 as per (9). Thus, as a → ∞,
l(k, a) → ∞ and an infinite amount of terms need to be
evaluated. Clearly this is impractical from a computational
point of view due to finite time constraints, and for this reason
an iterative approach was taken in [13] and [14] to obtain
final field and ring quantisation estimates as a function of
steadily increasing a. This required a suboptimal technique
of gradually increasing a from low levels upwards, meaning
that repeated cycles of computations were needed in order to
obtain convergence. In this section we suggest a geometrical
argument for obtaining a one-off value of modelling aperture a
which achieves the equivalent to convergence without needing
to go through the iterative process.

We know that in the real world the transducer has radius
R, and that the field along the plane of the transducer is zero,
so there can be no field contributions from anywhere beyond
the radius of the transducer. With the Fourier-Bessel series,
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the definition of the series assures that the transducer plane
is correctly modelled in the range 0 < r ≤ a. However, it is
not correctly modelled for r > a and this means that in the
Fourier-Bessel scenario, a nonzero pressure will in general be
emitted for all radial distances r > a. The situation is shown
schematically in Figure 1.

Consider a point S(rs, zs) in space. Then in general, in the
Fourier-Bessel setup, it will receive a contribution from all
points r > a as well as from any given point at some general
radius rp considered on the transducer surface. Specifically,
we shall consider the outer radius r+

p of ring p (where p =
1, . . . , N ) since this represents the furthest distance from the
transducer centre for a given ring surface pressure. Then, in
order to calculate the field correctly at point S(rs, zs) at some
time t, it is necessary to only receive the contribution from
the true physical source point at r+

p on the transducer surface,
and not that contribution from the false Fourier-Bessel sources
arising at r > a in the source plane. Now, the contribution
from the true source travels a distance dp at a velocity c from
source to S(rs, zs), where d2

p = (r+
p + rs)2 + z2

s . If we then
count time from some common base time t = 0 and assume
that the source point has a pulse of duration δp with some time
delay τp before emission begins, then the time tp at which
the last contribution from the source arrives at S(rs, zs) is
given by tp = τp + δp + dp/c. However, at the same time
there is a Fourier-Bessel component being emitted in general
from time t = 0 from all radial positions r > a. Taking a
false source at the point r = a (or, in theory, an infinitely
small distance beyond r = a), on the side of the field closest
to S(rs, zs), its contribution will travel a distance da where
d2

a = (a − rs)2 + z2
s and will arrive at S(rs, zs) at a time

ta = da/c. (Note that there will also be a contribution from
all other points at r = a around the transducer centreline, but
these will all travel a further distance and hence take more
time than the current point considered). Therefore, to ensure
that the estimate at point S(rs, zs) contains only true source
contributions, we must choose a large enough to ensure that
tp < ta. Substituting for the relevant values gives

a > rs +

√[
c(τp + δp) +

√
(r+

p + rs)2 + z2
s

]2

− z2
s (30)

Note that this condition must be evaluated for components of
each ring p = 1, . . . , N since each ring has a different outer
radius r+

p , and in general also a different time delay τp and
possible also different pulse duration δp. This means that a
total of N different minimum values of a will be obtained
from above, and from a practical point of view the maximum
of all these values must be taken as the final optimum value
of a in order to exclude all erroneous components from the
entire set of rings present.

VI. CONCLUSIONS AND FURTHER WORK

An equivalence between the numerically implementable
FBS and the theoretical XWT as applied to circular symmetric
lossless linear fields has been derived. FBS is equivalent to

Fig. 1. Schematic diagram of point-to-point propagation under Fourier-Bessel
modelling. Real source contribution from a given point r+

p on transducer
surface and false source contributions from all points r > a

XWT when implemented over an infinite modelling aperture.
Previously the FBS has been used to compute and tune linear
fields by use of an iteratively increasing modelling aperture.
Here, a suggestion for a more economical non-iterative mod-
elling aperture has been provided. Potential application areas
include optimal calculation and tuning of linear ultrasound
fields, for which an extension to lossy media is also of interest.
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