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Exact solutions for nondiffracting beams. I. The scalar
theory
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We present exact, nonsingular solutions of the scalar-wave equation for beams that are nondiffracting. This means

that the intensity pattern in a transverse plane is unaltered by propagating in free space. These beams can have

extremely narrow intensity profiles with effective widths as small as several wavelengths and yet possess an infinite

depth of field. We further show (by using numerical simulations based on scalar diffraction theory) that physically

realizable finite-aperture approximations to the exact solutions can also possess an extremely large depth of field.

Any field of wavelength X initially confined to a finite area of

radius r in a transverse plane will be subject to diffractive
spreading as it propagates outward from that plane in free
space. The characteristic distance beyond which diffractive
spreading becomes increasingly noticeable is r2/X, the Ray-

leigh range. For this reason it is commonly thought that any
beamlike field (i.e., one whose intensity is maximal along the
axis of propagation and that tends to zero with an increasing
transverse coordinate) must eventually undergo diffractive
spreading as it propagates. This is certainly true, for exam-
ple, of Gaussian beams: a Gaussian beam having a spot size

r diverges at an angle proportional to X/r at distances z >> r2/
X from the beam waist.1

We present here free-space, beamlike, exact solutions of

the wave equation that are not subject to transverse spread-
ing (diffraction) after the plane where the beam is formed.
These solutions are nonsingular and, like plane waves, have
finite energy density rather than finite energy. Most impor-
tantly, they can have sharply defined intensity distributions
as small as several wavelengths in every transverse plane,
independent of propagation distance.

We begin with the wave equation for free space:

( V2-12A-2) E(r,t) 0. (1)

One can easily verify that an exact solution of Eq. (1) for

scalar fields propagating into the source-free region z 2 0 is

E(x, y, z 2 0, t)
r21

= exp[i(3z -_ t)] J A(MO) exp[ia(x cos 0 + y sin o)]do, (2)

where i 2 + a2
= (W/C)

2 and A(0) is an arbitrary complex
function of 4. When f3 is real, Eq. (2) represents a class of

fields that are nondiffracting in the sense that the time-
averaged intensity profile at z = 0,

I(x, y, z 2 0) =1/2 OEr, t) 12

=I(x, y, z = 0), (3)

is exactly reproduced for all z > 0 in every plane normal to

the z axis.

The only nondiffracting field [Eq. (2)] having axial sym-
metry is that for which A(0) is independent of 0, namely, a

field whose amplitude is proportional to

E(r, t) = exp[i(oz - Wt)] exp[ia(x cos X + y sin o)] -
fo ~~~~~~~2ir

= exp[i(fz - ct)]JO(ap). (4)

Here p2
= X

2
+ y

2 and Jo is the zero-order Bessel function of
the first kind. When a = 0 the solution is simply a plane
wave, but for 0 < a < w/c the solution is a nondiffracting
beam whose intensity profile decays at a rate inversely pro-
portional to ap, as shown in Fig. 1. The effective width of
the beam is determined by a, and when a = w/c = 27r/X (the
maximum possible value for a nonevanescent field) the cen-
tral spot assumes its minimum possible diameter of approxi-
mately 3X/4.

Since the intensity distribution of a Jo beam decays as 1ip,

it is not square integrable. In fact, even though the intensity
profile is sharply peaked, the amount of energy in each ring
(i.e., between two consecutive zeros of the Bessel function) is
approximately equal to that contained in the central maxi-
mum. It would therefore require an infinite amount of
energy to create a Jo beam over an entire plane. One can,
however, create such a beam over a finite area, and we will
now examine the propagation properties of Jo beams of fi-
nite aperture by using scalar diffraction theory.

It is well known2 that scalar diffraction theory yields ex-

cellent results when the wavelength is small compared with
the size of the aperture and the propagation angles are not
too steep. Both of these criteria are well satisfied in the
following cases, and we have used the Rayleigh-Sommerfeld
Green's function to perform the numerical simulations of
field propagation.

Let us assume that in the z = 0 plane we have a Jo beam
with a central spot diameter of 200 Am (a = 240.5 cm-') and
a total aperture radius of 2 mm, as shown in Fig. 2(a). Also
shown in Fig. 2(a) is a Gaussian with a full width at half-
maximum (FWHM) of 100 Am. The total energy in the Jo

beam is 10 times greater than that of the Gaussian beam.
Figure 3 shows a numerical simulation of the propagation of
the central peak intensity (i.e., the intensity at p = 0) for
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Fig.l1. Intensity distribution Jo2(ap) (-) and its envelope function2/rap (---- -).
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Fig. 2. Intensity distributions for a Jo beam (-) and a Gaussian beam (- - - -): (a) when z = 0 (i.e., in the initial plane where the beams are as-sumed to be formed), (b) when z = 25 cm, (c) when z = 75 cm, (d) when z = 100 cm, and (e) when z = 120 cm, assuming that X = 0.5 am. Notethat in 2(b)-2(e) the intensity of the Gaussian beam has been multiplied by 10.
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Fig. 3. Intensities I(p = 0, z) at beam center, as a function of

distance, of the Jo (-) and Gaussian ( ---- ) beams whose initial
intensity distributions at z = 0 are shown in Fig. 2(a).
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each beam as a function of distance from the z = 0 plane

when X = 0.5 Aim. The peak intensity of the Jo beam oscil-

lates in a manner reminiscent of the intensity distribution
for the Fresnel diffraction pattern of a knife edge.

Figures 2(b), 2(c), 2(d), and 2(e) show the beam intensity

profiles at z = 25, 75, 100, and 120 cm, respectively, with the

intensity of the Gaussian profiles multiplied by a factor of 10

(that is, these Gaussian beam profiles are the result of a
Gaussian in the z = 0 plane having a FWHM = 100 Am and a

total energy equal to that of the Jo beam). The Jo beam has
a remarkably greater depth of field than the Gaussian, and
this is due in large part to its energy distribution. Only 5%

of the total energy of the Jo beam is initially contained
within the central maximum, yet this is sufficient to create a
sharply defined central spot with an unchanging 200-jim
diameter over a distance of approximately 1 m. The Gauss-

ian beam, on the other hand, initially concentrates almost
100% of its energy within the 200-jim spot diameter and
shows measurable spreading after propagating only 1 cm.

1.5 ..... .......... J
."_Uz
c-

a:

a-

a:]tY~

a-

U)

M

LA

U-)

2

n-

a:

CR
a--

Cn

a:

a-

.2

1.0

0.5

2

p(MILLIMETERS)
(c)

0

p(MILLIMETERS)
(d)

Fig. 4. Intensity distributions for aJo beam: (a) when z = 0, (b) when z = 2 m, (c) when z = 4 m, and (d) when z = 5.5 m. The aperture at z = 0

has a radius of 1 cm, but only the central 4 mm of the beam is plotted in (b)=(d) in order to show clearly that the central spot diameter has not

changed.
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Fig. 5. Propagation of the central peak intensity I(p = 0, z) of the
Jo beam shown in Fig. 4(a).

Aperture 

Fig. 6. Geometrical shadow zone for Jo beams of finite aperture. A
conical shadow zone begins at the distance z = r/tan 0, where r is the
radius of the limiting aperture at z = 0, 0 = sin- 1 (aX/27r), and the
diameter of the central maximum of the Jo beam is approximately
37r/2a.

Let us now keep the central spot diameter of the Jo beam
fixed at 200 gim and increase the initial aperture radius from
2 mm to 1 cm, as shown in Fig. 4(a). That 200-jim spot will
remain clearly visible and propagate more than 5 m without
spreading, as demonstrated by the numerical simulations
shown in Figs. 4(b)-4(d). Figure 5 shows that increasing the
aperture by a factor of 5 not only increases the propagation
range by that same amount but also decreases the magnitude
of the fluctuation in peak intensity. A beam with such a
great depth of field would be very useful, for example, in
performing high-precision autocollimation or alignment.

There is a simple yet accurate method for finding the
range of a Jo beam of finite aperture. One sees from Eq. (4)
that the Jo beam is a superposition of plane waves, all having
the same amplitude and traveling at the same angle 0 =
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sin1 l(aX/27r) relative to the z axis but having different azi-
muthal angles ranging from 0 to 27r rad. For such a field
geometrical optics predicts, as shown in Fig. 6, that a conical
shadow zone begins at the distance

Zmax = r/tan 0

where r is the radius of the aperture in which the Jo beam is
formed. For example, in the case we studied in Figs. 2 and 3,
tan 0 = 1.9 X 10-3, the initial aperture radius r = 0.2 mm, and
we find that Zmax = 1.05 m. In the case studied in Figs. 4 and
5, the propagation angle 0 remains the same, but r is in-
creased to 1 cm, and thus Zmax = 5.25 m. In both instances
Zmax corresponds to a point located at the base of the sharp
final decay in the peak intensity of the Jo beam.

In fact, Eq. (5) has been found to predict accurately the
effective range of Jo beams of finite aperture for all values of
a in the range z/c > ao > 27r/r. When a > co/c, the wave is
evanescent, and Zmax = 0. When a < 2r/r, the source field is
essentially just a disk of radius r, and Zmax equals the Ray-
leigh range.

In part I of this investigation we have presented only the
scalar theory of nondiffracting beams; in part II we will
present the complete electromagnetic field theory. Several
methods of creating a Jo beam of finite aperture appear to be
feasible, and preliminary experimental confirmations of the
predictions presented here have been obtained. Further
experiments are under way, and detailed results will be pre-
sented separately.3

Finally, we want to point out that the class of nondiffract-
ing fields given by Eq. (2) can be further generalized to
include polychromatic solutions. One can easily show that
any linear superposition of nondiffracting fields [Eq. (2)], all
having the same a but having different frequencies X > ca, is
still nondiffracting in the sense that the time-averaged in-
tensity distribution is the same in every plane normal to the
z axis. The types of transversely nondiffracting pulses that
can be constructed are currently being studied.
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= r[(27r/aX)2 - W/2, (5)


