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INTRODUCTION

X-ray computerized tomograpy (X-CT) has been a great
success in medical diagnoses [1-7]. Its finders, Hounsfield
(English) and Cormack {(American), had got Nobel Prize In physi-
plogy and medicine in 1979. But, X-CT is harmful to human body
berause large dosage of the X-ray is used. In addition, the
equipment of X-CT is very expensive. In order to overcome the
disadvantages of X-CT, people developed the ultrasonic com-
puterized tomography (U-CT) [8]. Compared to X-ray, the wave-
Jlength of the ultrasound is much longer and, thus, the dif-
fraction effects of the ultrasound are remarkable. In order to
selve the diffraction problem of the ultrasound in U-CT,
people developed the concept of ultrasonic diffraction com-
puterized tomography (DUCT) [9-10], and, after then, many
reconstruction algorithms for DUCT have been developed and
further studied [11-18].

The concept of DUCT is directly based on the inversion of
wave equation under the weak scattering assumption (i.e. the
seattered wave is much smaller than the incident wave). Con-
ventional ultrasonic diffraction computerized tomography uses
the method analognus to that used in commercial X-CT. A plane-
vave 1is insonified on an object to be imaged and is rotated
360° around the object. For each position of the rotation, a
fgiffraction projection will be obtained (usually, we call such
a projection a view). Thus, as the incident wave rotates, many
projections will be cbtained. From these projections, the
images can be reconstructed. The advantage of the conventional
DUCT is that high quality images can be obtained by relatively
less projections and less points contained in each projection.
This is because relatively more information of the spectrum of
the object can be obtained by using this measuring geometiry.
But, the conventional DUCT requires its measuring system rota-
ting 360° around the object, and is not applicable when obs-
tacles exist in the path of the rotation. In addition, il
requires a large scale plane-wave insonification, which will
be difficult if it is used in practical medical imaging.
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In order to overcome the disadvantages of the conven-
tional DUCT, D.Nahamoo et al. [16] put forward a new type of
DUCT — the synthetic aperture diffraction computerized tomo-
graphy (SADCT). In SADCT, for a good image reconstruction, the
measuring system is only needed to rotate around the object

once and, in principle, any kind of inscnifications can be
used. Furthermore, in reference [15], D.Nahamoo et al. deve-
loped an interpolation-free reconstruction algorithm (TFRA)
for SADCT and performed its computer simulation study. But,
because this algorithm containes a space-variant Tilter, it
requires large amount of computations. For an NxN image recon-
strucled by NxN diffracted dala, this algorithm requires ap-
proximatly O(N3 +N210g2N) complex multiplications. Besides,
even if For a rather big valus of N, such as, N=128, the

reconstructed image is still not satisfied. In order to reduce
the number of the complex mutiplications and to improve the
image reconstructions, we used Fourier-domain interpolation
reconstruction algorithms (FDIRAs) for the reconstruction of
SADCT, and performed a detailed computational study of these
algorithms. For an NxN image reconstructed by NxN diffracted
data, the FDIRAs require only approximately O(N2log2N) complex
multiplications, and, the larger the N is, the more the compu-
tation is saved. From the results of the computational study
of SADCT, one can see that the quality of the images recon-
structed by FDIRAs is better than that reconstructed by IFRA.
In addition, in FDIRAs, the nearest-neighbor interpolation
reconstruction algorithm, in general, will give better results
than the bilinear interpolation reconstruction algorithm. But,
this is not the case for the conventional DUCT, where the
Fourier—-doamin bilinear interpolation reconstruction algorithm
gives bhetter results than the nearest-neighbor interpolation
reconstruction algorithm. This conclusion was demonstrated in
reference [11] and has been re-proved by us in this paper.

In the computational study of FDIRAs, we discovered that
hetter reconstructions would be obtained when the shift of the
coordinate of the object was performed before the Fourier-
domain interpolations, and, we also discovered that the accu-
racy of the interpolations of the points near the houndaries
of the Fourier—-domain coverage areas A or B (see Fig.2) had a
great influenece on the reconstructions.

Tn this paper, all the reconstructed images will be
quantitatively evaluated by distance criteria as well as re-
constructed values on a line through three smallest ellipses
of the phantom used in our computer simulation.

This paper is organized as follows ! TFirst, we will state
simply the basic principles of SADCT and obtain two diffrac-
tion projection formulas. Next, we will introduce FDIRAs and
derive the relationships between curvilinear and rectangular
coordinates. Then, we will give the results of the computer
simulation and the comparisons among these results. Finally,
we will make a brief summary of this paper.

BASIC PRINCIPLES FOR SADCT

Wave Equation

Tn this paper, we consider only the two-dimensiocnal case,
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Fig.l The datum acqusition geomelry of
the SADCT

i.e., we assume that the object is not varied with the axis =z
(the axis =z is normal to the x-y plane shown in Fig.l). The
goordinates x4 and x, in Fig.1l represent the positions of the
trénsmitter and the receiver on the transmitting line Lt and
the receiving line Ly, respectively, and the center of the
¢hject is sited at the point (0,d/2). The transmitter can be
moved to N positions on the transmitting line Li, and for each
transmitter position, the receiver can also be moved to N
positions on the receiving line Lr. Thus, by using this datum
apquisition system, NxN diffracted data will be obtained.

We now confine our discussion to soft bio-tissues. We
agsume that the object is immersed in the surrounding homoge-
meous medium (such as water), and the ultrasonic field in the
area between the two lines Lt and Ly is governed approximatly
by the inhomogeneous Helmheoltz equation

(v*+k2)u(r)=—f(rjulr) (1)

where v* is the Laplacian operator; u(r) represents the total
complex wave field at the point r=(x,¥); ko is the wave number
of the surrounding homogeneous medium; and f(r) is the object
function. f(r) is related to the distribution of a refrative
index n{r) by

kolnZ(r)-1] , reb
fir)={ (2)
0 , otherwise

land f(r}) will be a real functicon if the attenuation of the
object 1is not considered. (In the following., we will not
eonsider the attenuation of the object).

Solution of Helmholtz Equation and Born Approximation

The total wave field u(r) in Eq.(1) can be written as the
sum of the incident field u; (r) and the scattered field ug(r)
[18]

ulr)=u;(r)+ug(r) (3)

where ug(r) is given by [15]

ug(r)=f flro)ulr,)Glrlr,)dr, (4)
D
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and D is the area shown in Fig.l; G(r|r,) is the Green fune-
tion associated with the datum acquisition system. Here, we
assume G(rlr,) is a two-dimensional free-space Green function,
and can be expressed as [20]

J
Girir,)= — Hylkolr-r ) {5)
4

where H, is the zero order Hankel function with the first
kind; and |r-r .| is the distance between the field point
r=(x,y) and the source point r =(%,,¥,)-

We further assume that the Born approximation is held,
i.e., the weak scattering assumption is satisfied

laglz) | << lug(r)l (6)
Under the condition of the Born approximation, the total field

ul(r) in Eq.(4) may be simply replaced by the incident field
ugl(r)

J
uglr)= — § flr duilr)H,(le-r,l)dr, (7)
4 o

Thus, from Eq.(7), we obtain the weak scattering solution
of the Helmholtz equation (1).

Diffraction Projection Formulas for SADCT

Let wuilr;xt) represent the incident field at the point r
with the transmitter located at the point (x+,0), by using the
angular spectrum expansion [19,21], and through simple deriva-
tions [15], one obtains

1 o -Jjkxxt JK-r
J Aplke)e e dk 5 (8)

uilrixe)=
2

where A (k) i& the Fourier transform of the funection
(%x,0;0) which is the incident field on the transmitting line L
while the transmitter is placed at the origin of the coordi-
nate shown in Fig.l1l

o -Jkex
Ag(kx)= J wui(x,0;0)e dx (9)

where K:(kx,ky), and

ky= ’ Kok 2 (10)

He in Eq.(7) can also be expanded by the angular spectrum
expansion [21]

JT-(r-r4)

1 e
Holkglr-r )=z — _f — dtx (11)
p—
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fhere T=(ty,ty), and

ty= f k2-t2 (12)

- Bubstituting Egs.(8) and (11) into Eq.(7), and using the
gotation wug(x,;xt) to represent the received scattered field

at the point r=(xy,d), one obtains
Jtgd
1 @  je
ug(xyixe)= = I Apk) [ S F(z,)
(2m)" -oo Zty D
_j(I—E)‘EG .J‘[t;,()s’.r—]‘:xx’.t)
= dr,] e dtxdk x (13)

Let Ug(tx;kgy) be the Fourier transform of ugl{x,y;-x4), one
obtains

Jjtyd
J.(.‘? _-j(i_li)‘zo
Ug(tyike)s ———— Ai(ky)  flr,e dr , (12)
21:,3 D

If we take the filtering properties of the receiver into
gecount and define Psa({tx;i;ky) as the Fourier transform of the
scattered field received, we have

jtyd
JF_' "J‘(I"K)'Eo
Artt ) Ap(ke) S flx, e dr, (15)
D

Pea(txikx)=
Ztg

where A y (tx) is the filter function of +the receiver. The
integral on the right hand side of Eq.(15) represent the
Fourier transform of f(r) evaluated on the ecurvilinear co-
ordinate : {T-K; ltxl§ko s+l bxl{ko}, and is defined as F(T-K).
From Eq.(15), we obtain the diffraction projection formula

-Jjtyd
2jtye
F(T~K})= - Poaltaiky) {16)
Aplte)Ae(ky)

In order to make the Fourier space covered sufficiently
by the data measured, we must rotate the measuring system or
the objet 90° around the point (0,d/2) once. According to the
similar derivations given above, and defining the notation By
[ty ;ky) as the Fourier transform of the scattered field mea-
sured after the 90° rotation, we obtain another diffraction
projection formula

—jtyd
-1 2jtye
FlR@ (T-E)]l= - Psb(tz;kxl (17)
A (tx)Aplkx)

. 2 5 =l 5 4 p
vhere @ is a 90° rotation matrix, and @ 1is its inversion
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o, -1
Q = (18)
1, 0
From Eqs.(16) and (17) and by using the inverse Fourier
transform, the object function f(r) can be reconstructed.

FOURIER-DOMAIN INTERPOLATION RECONSTRUCTION ALGORITHMS

Fourier-Domain Coverages

Suppose that u-v 1is a rectangular coordinate on the
Fourier space and W=T-K, where W=(u,v) represents a vector at
the point (u,v), and according to Eqs.(10) and (12), one
obtains

u=-tx—-kzx
{ (19)
v=ty-iy

After the 90° rotation of the measuring system, if we
define W=Q(T-K), from Egs.(10), (12) and (18), we obtain

u= tg—ky
{ (20)
v=tyxthy
where [txl¢k, and |kil{ky,. For the.case |txl|>ke or lkxl>kyg
the scattered wave is not a propagation wave, but really an
attenuated field. If the receiving line Ly is placed several
wavelengths, say, ten wavelengths away from the object, the

effects of the attenuated field is negligible. By the way, we
will state that the Eqs.(16) and (17) are held only when the
conditions |txlg¢k, and lkz|gk, are satisfied.

The Fourier-domain coverage areas A and B can be obtained
from Eqs.(18) and (20), respectively, as shown in Fig.2

Relationships Between Curvilinear and Rectangular Coordinates

Tn order to perform the Fourier-domain interpolations, we
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’wmt find the relationships between the curvilinear and the
rectangular coordinates. From Egs.(12) and (10), we know that
ty»0 and kyx0, and we obtain

tZ+ty =k2 (21)
ki +ky =kg (22)
iFfrom Eq.{(18), we obtain
(u-tx)zuv-t.g)Q:gg (23)
! 2 2 2
(Uutkz) ™ +(vthy) =k (24)

) Eq.(23) represents the circles centered at (ty,ty), with
tadins  of kg, on the u-v plane. The trace of the center of
these circles (tx,ty} is alse a circle but centered at origin,
with radius kg, on the u-v plane, defined by Eq.(21). Because
‘ty30, Eq.(21) represents only the super-half of the circle.
Similarly, Eq.(24) represents the circles centered at (-lky,
-kgh with radius of kg, on the u-v plane. The trace of the
center of these cirecles (—kx,—kﬂi is on the lower-half of the
ewircle defined by Eg.(22). All the points (u,v) which satisfy
Fqs.(23) and (24) simultaneously will form a set which will
tover the area A shown in Fig.2. From Eqs.(21) to (24), we
will obtain the relationships between a point (tz,ky) on the
eurvilinear coordinate and a point (u,v) on the rectangular
cnordinate (See Fig.3).

If a point {u,v) belongs to the first or the third quar-
ter of the coordinate u-v, one obtains

1
tx= —(u-ql)
2
{ (25)
1
ky= — —(u+qgl)
2

-t -ty AT

2 kS 2
; bx+ty =
(txf(:ed)“- Z xtty =,
-" “,‘
.!‘{f‘:x,t-,)_ -
(U4, ]2ﬁ°'0) d{
~(yfef) /

ety |
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Fig.3 The vrelationships belwgen  the
curvilinear and Ehe restangular
coordinalzs
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where

(286)

I a point (u,v) belongs to the second or the fourth
quarter of the coordinate u-v, one obtains

1
tx= —(u+ql)
2
f {27)
i
kx= — —(u—g1}
2
From Eg.(20), one obtains
(11—t3)2+(v+tx)2:k§ (28}
(urk )2+ (v-kz)? =k 2 (29)

S8imilarly, we will obtain the relationships between a point
(tx,kx) on the curvilinear coordinate and a point (u,v) on the
rectangular coordinate in area B (the area B is formed by a
set of the points {u,v)s which satisfy the Egs.28 and 23
simultaneously as shown in Fig.2). If a point (u,v) belongs to

the first or the third quarter of the coordinate u-v, one
obtains
1
fz: - (\’7(]2)
2
( (30)
1
kx= — (v+q2)
2
where

(31)

If a point (u,v) belongs to the second or the fourth quarter
of the coordinate u-v, one obtains

1
t;z = —-—(v+q2)
2
{ (3z)
il
ky= —(v-q2)
2

Bilinear Interpolation and Nearest-Neighbor Interpolation

In order to reconstruct the object function f(r) from its
Fourier transform F(W} using TFFT, we must know the values
of F(W) on rectanglar grids. To arrive this, we use two com-
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monly used interpolation methods : the bilinear interpolation
and the nearest-neighbor interpolation. The bilinear interpo-
lation formula is given by

Nexe Npx
P (txjkx)= '[1 .Zl Pg (tx, skx; )hl{tx—tx; Jh2(kx=kyxj) (33)
1= JZ

Where {tx;;kx;) are the discrete points on the tx-kx plane, on
which the values of the function Pg(T-K) are known. Ngo and
Np. are the numbers of the discrete points of tx and kx res-
pectively, and hl and h2 are given by (here, Atx=akx=const.)

ltx—‘tz{l
1- — |t;::—txﬂ\<.A’f-:x’.=1-':aq,f1~1:,(i
hl(tz=tx )= Atx
0 , otherwise
{ Ikl—kle (34)
1- ——————— , lhy-ky il {8kax = ky;,, -k,
h2 (e —kxy )= 1 Ak x 4 %jer~Kxj
0 , otherwise

The procedures of the bilinear interpolation are given
below. Given a grid point (u,v) on the rectangular ccordinate,
if it belengs to the area A, we will calculate the correspon-
ding point (tx,kx) on the curvilinear coordinate according to

Eqs.(25) or (27), and then calculate Psgltx;ky) using Eq.({33),
finally, we will find the Fourier transform of the object
function F(W) from the Eq.(16); If the point (u,v) belongs to
the area B, we will calculate (tx,kz) according to Eqs.(30)
and (32), and then, using Eqgs.(33) and (17), we will obtain
the wvalue of F(W) at the point (u,v); If the point (u,v)
belonge to ANB, we will average these two interpolation re-
sultes and assign it to F(W) at this point. (The interpola-
tions of points near the boundaries of the areas A or B (see

Fig.2) will be specially considered in next section.)

The procedures of the nearest-neighbor interpolation are
the same as those of the bilinear interpolation except that
after the point (tx,kyx) is caleulated, the value of the Fou-
rier transform of the object function on the point (tx, :kxj,)
(vhich is the nearest-neighbor of the point (tx,kx) among the
points (tx{,kxj) (i=1,2,...,N¢,, j:l,Z,....NkI) on which the
Fourier transform of the object function are known) is taken
as +the value of the Fourier transform of the object function
on the point (tx,kx).

In order to diminish the Gibbs oscillation, we apply a
two-dimensional blackman window b{W) to the function F(W)
prior to IFFT

2nr imr
0.42-0.5c0s +0.08cos g2k,
2%k, 2 2k,
b(W)= (35)

0 AW 2k,

where

r:{ u2+v2+IEko (35")
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Fig.4 The 128xI28 head phantos Image Fig.5 The gray level asignasnt of the
used 1p our compuler simulaticn phanten. The dashed 1ine throligh
the phanton is the ling y=~G,408

If we take the 2-D IFFT of the function F(W)b(W), we will
obtain the low-pass filtered version of the object function
fir).

COMPUTER SIMULATION RESULTS OF THE FOURIER-DOMAIN TINTERPOLA-
TION AND INTERPOLATION-FREE RECONSTRUCTION ALGORITHMS

The Phantom Used in Qur Computer Simulation

The phantom used in our computer simulation was the same
as that used by Shepp and Logan [22], but had the gray level
assignment changed to those used by Devaney [13] and Pan and
Kak [11]. The image of the phantom and the gray level assign-
ment of the phantom are shown in Figs.4 and 5, respectively.

Definition of the Distance Criteria

For the convenience of the quantitative comparision of
the reconstructed images and the phantom, we have adopted the
distance criteria defined in [7] and defined the average
adjusted version of them. The definitions of these distance
criteria are given by

dl= (36)

ri= (37)

(38)

el= max |r
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where

Pry= —— (P, p5 T a1, 25 ¥T21, 27+ *T20e 1 2741 (39)

{p21121+p21+4., 7_]'+p2132:[+|‘+p21+1, 23—_'_‘, (40)

Ty and pgj in the above equations are pixel values of
the reconstructed images and the phantom for the ith row and
the Jjth column respectively, while T and p are the average
values of the reconstructed images and the phantom respec-
tively

1 128 128
= — 3 T (41)

128x128 i=1 j=1

1 128 128
Pz — L P (42)
128x128 i=1 j=1
If +the reconstructed image is the phantom, the distance
critera dl, r1 and el will be all equal to =zero. Therefore,
the smaller the distance critera are, the better the recons-

tructed 1images will be. The three distance criteria reflect
the different nature of the errors of the reconstructed
images. dl is sensitive to the individual large errors of the
reconstructed image; rl1 is sensitive to the accumulation of
the small errors; while el indicates the maximum error of the
ielements of the reconstructed images, which is important for
the quantitative image reconstructions (for obtaining the
distance eriterion el, we have chosen the average of every
four pixel wvalues as the value of one element of a recons-
tructed image, the element represents part of the tissues and
is usually of the size of several pixels).

If the images reconstructed have their averages different
from the average of the phantom, we will use the average
adjusted version of the distance criteria defined above. The
average adjusted version of the distance criteria are defined
and calculated as follows. First, we calculate the averages T
and P of the reconstructed image and the phantom according to
Fgs.(41) and (42), respectively, and then we add the dif-
ference between T and T to every pixel of the reconstructed
image, and finally, we re-calculate the distance eritera using

Fgs.(36), (37) and (38) and define the newly calculated
average adjusted distance critera as d2, r2 and e2, respec-
tively., From the definition of the average adjusted distance
eriteria, one may see that the average adjusted distances get
rid of the factor of the shift of the averages of the recon-
gstructed images and, therefore, they are more closely con-
nected to the qualities of the reconstructed images shown on a
monitor (because the brightness of the images shown on the

monitor can be adjusted arbitrarily to make the images looked
better). In this paper, we will using following eight criteria
d1, r1, el1, d2, r2, e2, max and min for all the images recons-
tructed. The notations max and min represent the maximun and
the minimun values of the reconstructed images before the
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Fig.6 (2] The reconstructed 128x128 lwsge Fig.8 (a) The reconstructed 128v!28 inage
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Fig.7 (a) The reconstructed 128x128 inage Fig.9 {a) The reconstrueted 128x128 inage
with N=128 for the SADCT (Biiinear) w1th N=64 for the SADCT (Nearest-
(b) Mumerical comparisen on the neighbor) (b) Nwasrical comparison
iine y=-0.605 (See Fig.5) on the line y=-0.605 (See Fig.5)
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Fig.10 {a) The recenstructed 128x129 1page
with Nz128 for the SADCT (Nearest-
neighbor} (b) Numerical comparison
gn the line y=-0.405 (See Fig.5)
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0.0 L.l . :
-50 0 50

|Fig.12 (3} The recopstructed 128x128 Image
With N-128 for the SADCT (Interpo-
lation-free) (b) Numerical compari-
son on Ehe line y=-0.605 (See Fig.5)
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Fig.11 [2) The reconstructed 129x128 1mage
with N=255 for the SADCT (Nearest-
peighbor) (b) Nuperical comparison
on the lipe y=-0.605 (Ses Fig.5)

Fig.13 (a) The 128x128 image reconstructed
from the windowed 128x128 Fourier-
domain grids (delta=4k0/128) (b}
numerical comparison on the Iine
w=-0.805 (See Fig.5)
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Table I. The distances of the i1mages reconstructed by tha FDIRAs and the IFRA
for the SADCT

Fig| N | Interpolation [ dy | vi | e |d2 |12 | €2 |max|min

6 |64 | Bilinear  logsss |oarsr|onasy|assss |otrst | aresg|teso -azgeq

9

64 Nearest - e
Neighbor 29571 |0.9100 | 0.6081 (09570 | 09105 |0.6139 08422 |-0.2703

7 | 28| Bilinear 04659 | 03179 |0.6089|0.4659 03179 |0.6087| 08364 |-0.1203

Nearest— L
10 | 128 poighbor  |03367|01634| 0.461703367\0.1634 |04616|09202 |96

8 | 266| Bilinear 03608|01943|0.522¢ 03608 (0.1943 | 0.5223| 08310 4943

xio?

Nearest— _2,
11256 o her  |03310| 0ta21| asset 03310 | 0142z | outss|ogres 237

12 | 128 | *eLPO I TON =\ on | 010 | 08365| 05091| 04224|6020| 072y |-aarag

Direct - 2.268
13|~ calculation (03288 |01226 0458603288 |0.1231 | 0:458¢|09209 |, 4

adjustment of the averages of these images.

The Comparison of FDIRAs and IFRA

Figs.6(a), 7(a) and 8(a) show the 128x128 images recons-
tructed by the Fourier-domain bilinear interpolation recons-
truction algorithm with N=64, 128 and 256, respectively; while
Figs.%(a), 10(a) and 11(a) are the same as Figs.6(a), 7(a) and
8(a) respectively, except that they were reconstructed by the
nearest-neighbor interpolation reconstruction algorithm.
Fig.12(a) shows the 128x128 image reconstructed by IFRA, and
Fig.13(a) is the 128x128 image reconstructed by direct calcu-
lation of the Fourier transform of the phantom on the rectan-
gular grids. The sampling interval of Fig.13(a) on the
Fourier-domain was taken as delta=4kys/128. Fig.13(a) is the
best image which can be obtained by DUCT with the use of 2-D
blackman window of radius [2k, and this sampling interval,
Figs.B6(b) te 13(b) are the comparisons of the reconstructed
values (real lines) and the real values (dashed lines) on the
line y=-0.605 (see Fig.5) corresponding to Figs.6(a) to 13(a),
respectively.

From Figs.7, 10 and 12, we can see that FDIRAs ¢give
better image reconstructions than IFRA with N=128 (for SADCT,
the reconstructions will not be good if N is less than 128,
this can be seen from Figs.6 and 9). From the comparison of
Figs.8, 11, and Fig.9% in reference [15], the same conclusion
will be obtained. In addition, we can see that the reconstrue-
tions obtained by the nearest-neighbor interpolation algorithm
are better than those obtained by the bilinear interpolation,
except for the case of N=64. These conclusions can also be
seen clearly from table 1 (Table 1 shows the comparison of the
distances of the reconstructed images from Figs.6 to 13). By
the way, we shall state that the quality of the image of
Fig.11 (N=256) 1is wvery cleose te its 1limit reconstruction
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Fig.14 (2) The reconstructed 128%128 image Fig.15 {a) The reconstructed 128x128 inage
With 360° rotated plzae-wave in- with Jeo* rotated plane-wave In-
sonification (8ilinear) (b) Nemer:- senification (Nearest-neighbor) (b)
¢al comparisen on the Iine y=-0.405 Numerical comparison on the line
(See Fig.5) y=-0.605 (See F19.5)
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Fig.16 (a) The 128xi28 image recenstructed fros the windowed 128x178 Fourjer-
donain grids (delta=2/2k0/128)  (b) nuserical cosparison on the line y==0.605
(See Fig.5)

Fig.13, and this indicates that the informaticn obtained from
the 256%x256 diffracted data for the SADCT are sufficient and
the errors caused by the reconstruction algorithm itself is
very small, provided that the weak scattering assumption is
satisfied and the data obtained by the measuring system are
sufficiently accurate.

For the conventional DUCT, the conclusion that the
nearest-neighbor interpolation algorithm is better than the
bilinear interpolation algorithm is not true. Fig.14 and 15
are the reconstructed images obtained by +the conventional
DUCT, and Fig.16 is the image reconstructed by the direct
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Table Z. The distances of the isages reconstructed by the bilinear and the
nearest-neighbor interpslation reconstruction algerithms for the 3é0°
rotated plane-wave tnsonified DUCT

Fig. Interpo lation di | r1 |ef |de | r2|e2 |max|min

14| Bilinear  |02910]0.1209|0.4100|0.2910)0.1209 |0.60|09436| 21
Nearest - 2
15| ‘meighbor 03105 |01895 |04298| 0310501897 |0.4292|09926 | 277

i + " n 5
16 | 8w ation |027255121 o379 \02725| %184 | 0.3708) 0861 [15%

caleculation of the Fourier transform of the object function on
the rectangular grids. The conditions of the reconstruction of
the image in Fig.16 are the same as those in Fig.13 except for
delta=2[2k, /128 (the radius of the blackman window is kept the
same). The distances of the reconstructed images of Fig.l14 to
16 are shown in Table 2.

From Fig.14, TFig.158 and Table 2, we ecan see that the
image reconstructed by the bilinear interpolation algorithm is
superior +than that reconstructed by the nearest-neighbor
interpolation. By the way, we can see that the image in Fig.l16
is superior than that in Fig.13. This is because the image in
Fig.16 contains more grid points in Fourier space than the
image in Fig.13.

Figs.17, 18 and 19 are the moduli of the 128x128 spectra
of the object obtained by the bilinear interpolation, the
nearest-neighbor interpolation (N=128) and the direct calcula-
tion, respectively. They are corresponding to Figs.7, 10 and
13, respectively. Tn order to show the details of the spectra),
we assigned those values which were greater than 2 to 2 in the
spectra (the maximan value in these spectra was about 20 and
occured at the center of these spectra). From these spectra,
we can see that in the case of SADCT, the spectrum obtained by
the nearest-neighbor interpclation is more accurate than that
obtained by the bilinear interpolation, especially in the
overlaped regions of the Fourier coverage areas A and B. This
is why for SADCT, the nearest-neighbor interpolaiton gives
better reconstructions.

Fig.17 The 126x128 spectrum image cb- Fig.18 The 128x128 spectrum image ob-
tained by the bilinear interpola= tained by the  nearest-neighbor
tion (N=128). (before windowing) Interpolation (N=128). (before win-

dowing)
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Fig.19 {3} The 128x128 spectrum image ob-
tained by direct calculations
(Before windowing)

Shift of Coordinate before and after Interpolations

Because we ftake the coordinate system shown in Fig.1l, the
center of the object is located at point (0,d/2). Therefore,
the coordinate of the object must be shifted in Fourier domain
before the 2-D IFFT is performed (the shift of the coordinate
of the object in the Fourier domain is fulfiled simply by
miltiplying the spectrum of the object with a phase factor).

In the computer simulation, we discovered that the order
of the shift of the coordinate and the interpolations had a
great influence on the reconstructed images. The shift of the

goordinate before the interpolations was better than the shift
of the coordinate after the interpolations. Figs.20 and 21
show Lthe images reconstructed by the bilinear and the
nearest-neighbor interpolation algerithms, respectively, with
the shift of the coordinate after the interpolations. Table 3
gEives the comparison of the distances of these images and the
images shown in Figs.7 and 10.

From Fig.20 we can see that there are noticeable unsym-
metrics in the reconstructed image as compared with Fig.7,
and, from Fig.21 we can see that artifacts are increased in
the reconstructed image as compared with Fig.10. In Tahle 3,
we will see that the distances for Figs.20 and 21 are in-
creased greatly. These results indicate that the qualities of
the reconstructed images will be degraded if the shift of the
roordipate is performed after the interpolations.

With and Without Special Considerations of the Points Near the
Boundaries

In the computer simulation, we also discovered that for
SADCT, the accuracy of the interpolations of the points near
the boundaries in the Fourier-domain coverage areas A or B
(see Fig.2) had a great influence on the reconstructed images.
This can be illustrated by Fig.22.

From Fig.22, we can see that the distributions of the
discrete points on which the Fourier transform of the object
is known are highly uneven. Near the axes of the rectangular
eoordinate, the points distribute densely, while in the areas
near the boundaries of the Fourier-domain coverage areas A or
B, the points distribute sparsely. Therefore, the interpola-
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65 +
L
0.0 D ; .
-50 o 50
Fig.20 {a) The recenstruicted 128x128 Image Fig.2l (a) The reconstructed 128x128 Image
with Nz128 for the SADCT. The ce- with N:z128 for the SADCT. The co-
ordinate was shifted afler the ordinate was shifted after the
bilinear 1nterpolation. (b) Mumeri- nearest-neighbor interpolation. (b)
cal comparison on  the line y= Numerical cemparison on the line
-0.405 (Ses Fig.5) y=-0.605 (See Fig.5)

tions of the points near the boundaries will be less accurate
than those near the axes.

The special considerations of the points near the boun-
daries are as follows. Rather than interpolate the points near
the boundaries by averaging two interpolation results obtained
from the areas A and B respectively as described in previous
section, we 1interpolate the points near the boundary of the
area A by the data in the area B, and vice versa. This will
produce better results because a point near the boundary of
one area will be the point near the axis in ancther (because
the high values of the spectrum are concentrated in the low-

$x Fixed

an d equaﬂy spaced

Boundary of

Fig.22 The distributions of the known valves on the
curvilinear coordinate for the SADCT
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Table J. The istances of the images reconstricted by  the FDIRAs
for Lhe SADET (coordinate shifi after the interpolations)

Fig.| N | Specifications| df | v{ | ef | d2 | y2 | €2 | max|min
(oordinate shifted
20 |128 |after bitinear 04990 0.3501| 7446|0490 (0.3592 | 0.7445) 0861 |-02646
interpolation

Coordinate shifted
T |128 | before bidinear |04659|05179|060§9|0.4659| 03179 | 06087|0836% |-at203
interpolation
Coordinate shiftéd 40
21 | 128 |after nearest-neighi0.3596| 02017 05084 | 03596|0.2017 | 0.5082| 09795 ff;a.,,_

bor interpolation

Coordinate shifte] -4978
10 | 128 | before nearest-neigh- |03367| 01634 |0.4617|0.3367|04634 | 04616 09202 i

boy interpolation

frequency region, we just consider mainly those points in the
region of lower frequency). In practical implementation of the

interpolations of the points near the boundaries, we must
decide which points are those near the boundaries. We solved
this problem by experiments. As a result, we interpolated the

points near the boundary of one area by the data in -another
when +the conditions |te|3k,/32 or |kxl}k,/32 were satisfied.
Pigs.23 and 24 are the reconstructed images obtained by the
Fourier-domain bilinear and nearest-neighbor interpolations
respectively, and with no specical considerations of the
points near the boundaries (i.e., the interpolations of a
point near the boundary of one area is performed by the data
in the same area, then, if the point is in the intersections
of two areas, the results of the interpolations obtained from
these two areas are averaged).

Table 4. The distances of the images reconstructad by the FDIRAS  for
the SADCT (no eonsiderations of bhe vicinity poinls of the boundaries)

Fig|N |Specifications | df | v{ |e1 |d2 |2 | e2 |max|min

Bilinear interpolation
i iderati
7 128 ;}ﬂ?ﬁ;ﬁﬁﬁ.ﬁ?ﬁ}"’ 0.4659 | 03179 | 06089 [0.4659 |0.3179 |06087|08364 -01203
the boundaries
Bilinear mtexpolation
ith idepaty
23 | 128 | S gpe wicimeties of (04935 (03287 0.6060| 0 4935 03288 | 0.6659\ 07683 01204
the boundaries
Nearst-necghbor inter-

o with the con- 4976
10 |18 | oot the v (03367 1634|0617 03567 |0165¢ (04616 09209 5

nities of the boundries e
Nef:f_rt-mfgﬁbar inter-

2 | 128 [ vt of he - |03760| 02151 | 05418 03740 02157 | 0505 09120 |-01095
nities of the beundaries
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Fig.23 (a) The reconstructed 128x128 1mage Fig.24 (a) The reconstructed 128x128 image
WIGh N=128 for the SADCT (bilipear). with N=[78 for Lhe SADCT (nearest-
No special considerations. of those naighbor). No special considerations
porats In the wvieinities of the of those poinis 1n the vieinities of
Loundaries (b} Numerical comparisop the boundaries [b) Numerical compari-
on the line y=-0.605 (See Fig.5) son on the lipe y=-0.505 (See Fig.5)

From Figs.23 and 24, we can see that the reconstructed
images degraded greatly as compared with figs.7 and 10 respec-
tively (Fig.7 and 10 are the images reconstructed with the
special considerations of the points near the boundaries of
the areas A and B using the method described above). In Table
4, we can see that the values of the distances for Figs.23 and
24 are increased remarkably.

For the results obtained by the shift of coordinate after
the interpolations and, at the same time, with no special
considerations of the points near the boundaries, the readers
may refor to reference [18].

SUMMARY

In this paper, we have made a detailed study of FDIRAs
for SADCT,  and, the results of the study has been compared
with those obtained by TFRA developed by Dr. D.Nahamoo et al.,

The major conclusion of our computer simulation study is
in the following

(1) The number of the complex multiplications has been
greatly reduced from the order O(N3+N210g2N) for IFRA derived
by Dr. D.Nahamoo at el. to O(NZlog,N) for FDIRAs for an NxX
image reconstructed from NxN diffracted data. (For N=128, VAX-
11/730 CPU processing time were 2.61 min (bilinear) and 2.57
min (nearest-neighbor) for FDIRAs and 19.28 min for IFRA).
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(2) FDIRAs gives better reconstructions than IFRA.

(3) For FDIRAs of SADCT, the nearest-neighbor interpola-
tion reconstruction algorithm will give better results than
the bilinear interpolation, but, it is not the case in the
cotiventional DUCT.

{4) For FDIRAs of SADCT, the shift of the coordinate of
the object must be performed before the Fourier-domain inter-
polations, otherwise, the quality of the reconstructed images
w1l be degraded.

(6) The aecuracy of the interpolations of the points near
the boundaries of the Fourier-domain coverage areas has a
great influence on the reconstructions. Therefore, to ensure a
good image reconstruction, the interpolations of these points
nust be specially considered.

(6) In this paper, all the reconstructed images have been
evaluated by the distance criteria, and these criteria are
well coincidence with the quality of the reconstructed images.

(7) The relationships between the curvilinear coordinate
and the rectangular coordinate for SADCT are not so straight-
forward as compared with the conventional DUCT. It depends on
which quarter of the Cartesian coordinate and which area of
the Fourier—-domain coverages a point (u,v) on the rectangular
coordinate belongs to.

|8) TFor SADCT with N=256, the Fourier transform of the
diffracted data will provide suffieient information of the
Fourier transform of the object, and the nearest-neighbor
interpolation reconstruction algorithm itself will cause
Jittle distortion and will produce a reconstruction close to
the limit reconstruction (see Fig.13).

(9) The disadvantage of SADCT is that the distribution of
the points on which the Fourier transform of the object are
lnown are highly uneven as compared with the conventional DUCT
[11], and, thus, more diffracted data are required for SADCT
to ohtain the same reconstruction quality as the conventional
DUCT.
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