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Sidelobe Reduction for Limited
Diffraction Pulse-Echo Systems

Jian-yu Lu, Member, IEEE, and James F. Greenleaf, Fellow, IEEE

Abstract-—Conventional focused transducers have a sharp focal
spot with low sidelobes but, they have a short depth of field.
Commercial medical scanners obtain increased depth of field
by combining several images in a montage, each obtained at
a different focal depth. Therefore, to get low sidelobes over
a large depth of field several transmits must be used, which
decreases the frame rate. Limited diffraction beams such as
Bessel beams and X' waves obtain good resolution over very large
depth of field but, they have high sidelobes. We have developed a
summation—subtraction method for decreasing the sidelobes. The
method requires three transmits, decreasing the frame rate to one
third. Although others have tried the same technique, we apply it
to limited diffraction beams and obtain an analytic description.

I. INTRODUCTION

IMITED diffraction beams have been studied recently.
These beams have a large depth of field even if they
are produced with a finite aperture and energy. The first
localized solution to the isotropic/homogeneous scalar wave
equation was discovered in electromagnetics by Brittingham
in 1983 [1] and was termed focus wave meodes. Two years
later, in 1985, a new localized solution to the scalar wave
equation was developed by Ziolkowski [2]. The new localized
solution was used to construct other localized solutions such
as the modified power spectrum pulses [3]. Independent of
Brittingham and Ziolkowski's works, in 1987, Durnin [4]
discovered the first limited diffraction solution to the scalar
wave equation and called it “nondiffracting” or “diffraction-
free” beams (we use the term “limited diffraction beams”
to avoid the controversy of Durnin’s original terminologies).
Durnin’s beams are also called Bessel beams because their
lateral profiles are Bessel functions. The Bessel beams were
verified with optical experiments [5]-[7]. Hsu er al. produced
a zeroth-order Bessel beam with a narrow-band ultrasonic
transducer [8]. Campbell ef al. [9] have studied the zeroth-
order Bessel beam theoretically and made the same suggestion
as we did to produce the Bessel beam with an acoustic annular
array | 10]. We have produced a broadband zeroth-order Bessel
beam with an ultrasonic annular array transducer and applied
it to medical imaging, biological tissue characterization, and
nondestructive evaluation of materials [10]-[19]. In addition,
we have reported new families of limited diffraction solu-
tions of the scalar wave equations [20]-[23]. These solutions
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are a generalization of the limited diffraction beams known
previously in addition to an infinity of new beams such as
X waves. The X waves are nonspreading-nondispersive and
superluminal, and have an X-like shape in a plane along
the propagation axes. We have also generalized the limited
diffraction solutions to an n-dimensional scalar wave equation
[24]. Recently, a mechanical scanned annular array that can
produce either limited diffraction beams or conventional fo-
cused beams was built and was applied to real-time in virro
and in vivo medical imaging [25]. The possibility of steering
limited diffraction beams with a two-dimensional array was
also studied [26].

Although limited diffraction beams could have many practi-
cal applications, sidelobes of these beams are higher than those
of conventional focused beams at their focuses. Sidelobes will
lower contrast when limited diffraction beams are applied
to medical imaging affecting the detection of low scatter
objects such as small cysts. In addition, sidelobes increase
the effective sampling volume and thus average out spatially
distinguished information in tissue characterization. Sidelobes
are also a source of multiple scattering that produces artifacts
in nondestructive evaluation of materials [13].

In this paper, we report a method for reducing the sidelobes
of pulse-echo responses of limited diffraction beams. This
method is similar to those used for the ring transducer of
Burckhardt et af. [27] and the hybrid Axicon of Patterson ef al.
[28]. A theoretical analysis for using a summation-subtraction
method to reduce the sidelobes of limited diffraction pulse-
echo systems was developed. Simulations with a finite aperture
radiator were performed to validate the theory (with a formula
developed for calculating pulse-echo responses of any-order
limited diffraction beams under the Fresnel approximation
[29]). Though the above method can reduce the sidelobes
dramatically, it lowers the imaging frame rate to one third
because three A-lines obtained at each transducer position are
required. The penalty paid on imaging frame rate is similar to
that of conventional focused beams, where a montage process
is used to increase the depth of field while keeping lower
sidelobes. The montage process requires sub-images obtained
around separate transmit focuses of the conventional beams,
which requires multiple beam transmissions and thus lowers
the imaging frame rate.

It is noted that although low sidelobes over a large depth of
field can be obtained with conventional focused beams through
montaging, drawbacks of these beams remain. First, these
beams are still diffracting after the montage process. Images
obtained will be sharper near a transducer and gradually

0885-301(/93%03.00 © 1993 IEEE




736 [EEE TRANSACTIONS ON ULTRASONICS. FERROELECTRICS. AND FREQUENCY CONTROL, VOL. 40, NG, 6, NOVEMBER 1993

blurred in deeper depths since the f-number of the transducer
increases with the depth. The depth dependence of image
resolution is undesirable if image restoration techniques such
as deconvolution are to be used for further improvement of
image quality. Second, the focal lengths of conventional beams
change with speeds of sound. Thus, either the transducer or its
associated electronics need to be changed to maintain given
focal lengths for nondestructive evaluation of materials of
different speeds of sound. In addition, the montage process
is usually more complex than doing A-line summation and
subtraction in a machine.

In the next section, we will give a theoretical background
for certain families of limited diffraction beams. The equations
given in that section will be used for developing the sidelobe
reduction method that follows. In Section IlI, a theoretical
analysis of the sidelobe reduction method for pulse-echo sys-
tems using limited diffraction beams is reported. Simulations
of pulse-echo images obtained from a finite aperture radiator
are given in Section IV. A discussion and conclusion are
presented in Sections V and VI, respectively. A formula for
simulating pulse-echo responses of limited diffraction beams
of any order, under the Fresnel approximation is given in
Appendix B.

II. THEORY OF LIMITED DIFFRACTION BEAMS

In the following, we will derive new equations of Bessel
beams [4] and X waves [20], [21] generalized for any order,
m. These equations represent non-rotating beams in a trans-
verse plane and are different from what we derived before [20],
[21]. They are the bases for the sidelobe reduction method
developed in the next section.

A. One Family of Solutions to the N-dimensional
Scalar Wave Equation

Many physical phenomena in acoustics, electromagnetics,
and optics are govermed by wave equations. An n-
dimensional scalar wave equation for source-free, loss-less,
and isotropic/homogeneous media is given by [30]

\i 9 1
B:n:} e2 912

=1

D=0 (1

where x;, (j = 1,2,---,n), represent rectangular coordinates
in an n-dimensional space, ¢ is time, n is an integer, ¢
is a constant and represents the speed of wave, and ® =
Py, wo, -, Ty:t) i1s an n-dimensional complex wave field.
In the physical world, only the real or imaginary part of a
complex wave is produced.

Equation (1) has numerous solutions. One family of solu-
tions is given by [24]

q)(:lr],:l,‘;z,---.;lf,,;t) = f(s) (2)
where
n—1

5= Z Djz; + Dy (=, — c1t),

g=

n>l (3

and where

¢ = e, )

and where D; are any complex coefficients, and f(s) is any
well-behaved complex function of s. We assume that n # 0,
otherwise, f(s) is only a function of time and represents a
vibration.

B. Limited Diffraction Solutions

If ¢y in (3) is real, f(s) represents a limited diffraction wave
propagating along axis, x,,. at the phase velocity of ¢y, in an n-
dimensional space [24]. By limited diffraction we mean that
travelling with the wave, one sees a complex wave pattern
that does not change with time. This means that if =, — 1t =
constant, f(s) is not a function of time, . In the following we
chose the “+” sign in (4) that represents a forward going wave.
Results will be similar if a backward going wave is studied.

Numerous solutions can be constructed from the family of
solutions, [(s), by a linear superposition [20]. New solutions
that represent non-rotating Bessel beams and X waves are
two examples.

C. Non-Rorating Bessel Beams

letting n = 3, &y = x, ¥y = y, €3 = 2z, [} =
iccos ), Dy = doesin 8, Dy = i, f(s) = €%, where
is a constant, 4 = w/e; = /(w/c)> —a? > 0 is real, w
is angular frequency, # is a free parameter, and integrating
(1/2m)i " cos m(f — ¢p) f(s) over # from —a to m, one
obtains an mth-order non-rotating Bessel beam
B (8)=Jm{ar)cos m{d — r,bg)ff.‘.(“qz*“’”. m=0,1,2,--
(3)
where m is an integer, J,, is an rnth-order Bessel func-
tion of the first kind, r = /22 + y? is a radial distance,
¢ = tan~'(y/x) is an azimuthal angle, and ¢g is an initial
azimuthal angle (polarization) of the beams at the plane, z = 0.
The non-rotating Bessel beams given by (5) are also exact
solutions to the wave equation (1) (see Appendix A). They
are different from the former Bessel beams by replacing '™
with cos m(¢ — dp).

D. Non-Rotating X Waves

Non-rotating X waves can also be obtained by choosing
different coefficients in (3) and integrating over different
paramters. Letting n = 3, 7y = @, &y = ¢y, ¥3 = 2, D1 =
iksin C cos 8, Dy = iksin Csin #, Dy = ikeos (, f(s) = ¢,
where & = w/¢ is the wavenumber, ¢ is a free parameter, and
integrating (1/2m)i=™ cos m(f — ¢o)B(k)e=%*X f(s) over 0
from —o to m and over k from O to oo [20], one obtains an
mith-order non-rotating X wave

Dy, = cosm{p — ¢) /‘% B(k)Jm(krsin ()
Ja

. p—kloa—icos C(z—eat)] gp.

m=10.1,2---(6)
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Fig. |. Squares of the zeroth-order (dotted line) and second-order (dashed

line) Bessel [unctions of the first kind and the absolute value of their
subtraction (full line).

where B(k) is the transmitting or receiving transfer function
of a transducer. ag is the constant that determines the fall
off speed of the high frequency component of the X waves,
and ¢; = ¢/ cos ( is the phase velocity. Equation (6) is also
an exact solution to the wave equation (1). Compare (5) to
(6), it is seen that X waves have a constant phase velocity
for all frequency components. This means that X waves are
nondispersive in an isotropic/homogeneous medium as will be
seen from Fig. 6 in Section IV.

We will use (5) and (6) to show that the sidelobes of
limited diffraction beams can be reduced using a summa-
tion—subtraction method. The sidelobe reduction method works
in principle on systems that transmit limited diffraction beams
and receive echoes with the same limited diffraction responses,
i.e., on limited diffraction pulse-echo systems.

[II. METHOD FOR SIDELOBE REDUCTION

We will first derive the signals returned from a point
scatterer and received with a limited diffraction pulse-echo
system. We then show the sidelobe reduction of these systems
with a summation-subtraction method.

A broadband Bessel beam is given by [9], [11]

1 o

O dw (27T (w) i (ar) cos m(h — cbg)c“h}e""“"
o

"l‘I:I)_

=21 T (0r') cos m{ep — b ) F ~H{ T (w)e™*}.
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Fig. 2. Poinl spread functions of a Bessel beam pulse-echo system in a

transverse plane. (a) zeroth-order Bessel pulse-echo system, (b) second-order
Bessel pulse-echo system with ¢ip = 0. (¢) second-order Bessel pulse-eche
system with ¢y = 7 /4. (d) summation of the twe point spread functions of the
second-order Bessel pulse-echo systems;, and (e) absolute value of subtraction
between Panels (d) and (a). Note that Panel {d) does not have a mainlobe.

m=20,1.2,--- (7

where T'(w) is the transmit transfer function of a transducer
(Fourier transform of an impulse response) and where 7 =1
represents an inverse Fourier transform that is defined as

10 =F @)} =5 [ dF@e @

T Joo

and where f(t) and F(w) are a Pourier transform pair.
Equation (7) is still an exact solution of (1) since it is simply
a linear superposition of (5) over the free parameter, w.
Assuming that the receive transfer function of the transducer is
the same as that of the transmit, from the reciprocal principle,
one obtains signals returned from a point scatterer located at
7= (r ¢z)
ey, (7, t)= 47|‘2J;':',(Q‘f')(3052 m(gh — o) F 1! {Tg(w}e"!-‘”}.
= 0;1,2; » . (9

If point scatterers are distributed in the half space, z > 0,
and multiple scattering among the scatterers is negligible, the
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electrical signals from the transducer are given by

mﬁﬁiw-/’ f cid)j dz

[A(r. ¢, 2) T2, (cw)ms i — o)

1{T2(w zEH-H, m=0,1,2.--- (10)

where A(r, ¢, z) represents the reflection coefficient of the
scatterers.

From the properties of the Bessel functions [31], it is noted
that for r = 0, J&(ar) and JZ{cr) are one and zero, respec-
tively, and both JZ(ar) and JE(ar) — (2/mar)cos® (ar —
(m/4)) as ar > 1. J3(ar) and J3(ar) are also very close
to each other for other values of ar except for the first
few sidelobes. Therefore, subtracting J3(ar) from J3(ar)
could result in a significant sidelobe reduction (see Fig. 1).
To perform the subtraction, the ¢ dependent term associated
with the higher order Bessel beams (rn. > 1) in (10) must be
removed. This can be done by adding two RF A-lines obtained
w1th the transducer rotated one quarter pﬂnod (7/ (271; ) for

= 2) relative to each other (note that cos® mg+cos® m(p—
:r/ (2m)) = 1). Therefore, sidelobes could be reduced by first
summing two second-order RF A-lines and then subtracting
the result from a zeroth-order A-line

e, (t) — len ()| eo=0 + €3, (1) |po=r/a]
:47r2f rd'rf d(j)/ dzA(r, ¢, z)
—o0 —T 0
[ (ar) — T3 (ar))FH T (W)}, (1)

For larger v, |J3(ar) — J3(ar)| = 0 in (11). and thus
the scatterers in those areas have little contribution to the
combined echo signals. This greatly reduces the sidelobes. A
pulse-echo image of reduced sidelobes can be formed from
the above A-lines by scanning the transducer. In Fig. 2, a
sidelobe reduction process is demonstrated with the point
spread functions of a Bessel pulse-echo system.

For X waves, a similar summation—subtraction formula can
be obtained from (6)

EXu( )

[6\2 (f “.ﬁt}:ﬂ + e\s(t :fm—w/4]

[ rdr/" dep UL dzA(r, i, 2)F

[l A

_BQ(F) (E)ﬁ-m(m/n)anegz(_,/c)zms,- (} (12)

[ 5

where
w 1, w>0
H(?) B {0, w<0

is the Heaviside step function [32]. The mechanism of the
sidelobe reduction with (12) is the same as that with (11) and
is also illustrated by Figs. 1 and 2.

GEOMETRY OF BEAD PHANTOM

Seanning Directiont j« 25 mm — |
Fig. 3. An object consisting of 5 point scatterers in the plane, ¢ = 0 (or
yo = 0), for simulation of pulse-echo images (modified with permission
from [11]).

I[V. COMPUTER SIMULATIONS AND RESULTS

The above theory for the sidelobe reduction of the limited
diffraction pulse-echo systems can be tested with computer
simulations. In Appendix B we derive the following formula
for calculating the pulse-echo responses of Bessel beams or
X waves of any order from a point scatterer located at
fy = (w0.0,2z) (point spread function) under the Fresnel
approximation [29];

e(Fo,t) = cos? mpoF {4 (7o, w)} (13)
where
e 2 1\ zed®V/a 2 tmn/2)
QA(?.”‘W):(E_F .;n;-’,+zz) (xF + 22)
' /“ By (1, w)efri 2V H)
Jo
o (k\/}g%) rrdiy (14)
and where
Py (r1.w) = 20T (W) Jm(cery) (15)
for Bessel beams and
Dy (r1.w) = %B(k}.fm(k-rl sin Q) H(k)e™™*  (16)

for X' waves.

The following results demonstrate the reduction of sidelobes
of limited diffraction pulse-echo systems by subtracting the
pulse-echo A-lines calculated from (13).

An object consisting of five point scatterers [11] located in
the plane 1y = 0 (see Fig. 11 in Appendix B) is shown in
Fig. 3. The transducer is assumed fo scan in the transverse
direction along the axis, zy, and is aligned for ¢¢g = 0 (or
cos? meg = 1 in (13)).

Envelopes of simulated pulse-echo images with the zeroth-
order and second-order Bessel beams in both transmit and
receive, and their difference images (obtained by subtracting
RF signals and then taking the envelopes) are shown in Fig.
4. The transducer is assumed to have a diameter of 50 mm
with a central frequency of 2.5 MHz. The scaling parameter
of the Bessel beams is i« = 1202.45m™!, and the depth of
field is about 216 mm. The Fourier transform of the impulse
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Fig. 4. Envelopes of the simulated pulse-echo images ol the object in Fig. 3 with the Bessel beams in both transmil and receive at four agial distances: 50
mm (first column), 100 mm (second column), 150 mm (third column), and 216 mm (fourth column). The images in the first and second rows are oblained
with the zeroth- and second-order Bessel beams, respectively. The images in the third row are results after the subtraction of the RF images. carresponding to
the second row [rom the RF images corresponding 10 the first row. The Grey scale of the images represents the envelope of the pulses in a linear scale.

response of the transducer is assumed to be a Blackman
window function [33] peaked at 2.5 MHz (see T'(w) in (15))
and a 6-pulse is used to excite the transducer. The aperture
of the transducer is weighted with the exact Bessel functions
(15), as well as the angular-dependent term cos (¢ — dy)
in (5), where ¢, is the angular position of a point on the
transducer surface. Fig. 5 shows the lateral line plots of the
rightmost point scatterer (Fig. 3) of the images in Fig. 4. To
show the sidelobes, the vertical scale of the plots represents
the maximum of the envelope of each A-line produced by
the rightmost scatterer (since there are other point scatters
on the left, only the right portion of the A-lines thal begins
from a vertical bar that passes through the peak of the image
of the rightmost scatter is taken into account, see Fig. 4).
Both RF and envelope subtractions are presented in Fig. 5.
The envelope subtraction means subtraction between envelope
detected images. It results in lower sidelobes but it may have
limitations that will be discussed in the next section.

Images in Fig. 6 are obtained with the X' waves. The
transducer and scanning format for obtaining Fig. 6 are the
same as those for Fig. 4. Exact X' wave aperture weightings
(16), as well as the angular-dependent term cos {1 — ¢by)
in (6) are used. The parameters in (16) are assumed lo be as
follows: B(w/e) = T(w) is a Blackman window function,
ag = 0.05 mm, { = 6.6°, and the depth of field of the X
waves [20] is about 216 mm. The lateral line plots of the
envelope through the rightmost point scatterer of Fig. 3 are
shown in Fig. 7 for X waves.

V. DISCUSSION

A. Resolution and Depth of Field

The resolution of the pulse-echo images obtained with the
zeroth-order limited diffraction beams is about the same as that
of the images obtained after the subtraction of the second-
order beams. The depth of field of the beams before and
after the sidelobe reduction is also the same (see Figs. 4 and
6). This can be expected since both the zeroth- and second-
order limited diffraction beams have about the same depth
of field for a given transducer size. The second-order limited
diffraction beams do not have a mainlobe and their sidelobes
are close in amplitude fo those of the zeroth-order beams.
Therefore, the mainlobe of the zeroth-order beams remains
about the same before and after the sidelobe reduction, see
Fig. 1.

B. Sidelobes

The sidelobes of the limited diffraction pulse-echo systems
are teduced dramatically after the summation—subtraction of
A-lines (see Figs. 5 and 7). Higher order limited diffraction
beams having sidelobes closest to those of the zeroth-order
beams must be chosen for the best results. In this paper we
chose the second-order beams. Subtraction, in principle, should
be done with RF signals. However, subtraction with envelope
signals has shown a further reduction of the sidelobes (see
Figs. 5 and 7). The reasons may be that the envelope signals
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Fig. 5. Lateral line plots of the Bessel beam pulse-echo images of the
rightmost point scatterer in Fig, 3. The vertical axes of the plots represent
the maximum of the envelope of each A-line of the rightmost point scatterer.
The dotted lines represent the plots before sidelobe reduction. The full and
dashed lines correspond to the images after RF and envelope subtractions,
respectively. The plots are obtained at four axial distances corresponding to
the images in Fig. 4: (a) 50 mm, (b) 100 mm, (c) 150 mm, and (d) 216 mm.
The lateral axes are normalized to the central wavelength of the beam (0.6
mm).

do not vary as fast with time as the RF signals (see Fig. 8),
and in the simulation, there are only a few scatterers that are
distributed in one plane (see Fig. 3). Since envelope detection
involves nonlinear processes and removes phase information,
subtraction with envelopes could not effectively reduce the
sidelobe if there are many scatterers distributed randomly
in a three-dimensional space. In addition, the summation of
signals from the two rotated higher-order limited diffraction
beams should also be done with RF signals to remove the
angular-dependent terms (see (10)).

Comparing Figs. 5 and 7 to Fig. 1 (see the RF subtractions),
it is seen that the simulations are predicted by the theory ((11)
and (12)).

C. Object Motion

Apparently, the sidelobe reduction method will be sensitive
to the motion of the objects imaged since it involves RF
summation and subtraction. However, if the time between
adjacent A-lines to be summed and then subtracted is short
enough, motion artifacts might be negligible. For still objects,

the summation and subtraction can be done either A-line by
A-line or after a whole pulse-echo image is obtained.

D. Stepwise Aperture Weighting

In practice, an exact aperture weighting given by, ®(7,w),
in (B1) is usually hard to apply as seen from (15) and (16),
as well as the angular-dependent term cos m(¢1 — ¢p) in
(5) and (6). Therefore, stepwise aperture weightings in both
radial and angular directions may have to be used [11], [21].
The stepwise approximation will alter both the radial and
angular dependence of the beams and will have influence on
the sidelobe reduction. However, as the steps become finer
and the weightings approach the exact ones, the influence
would be smaller [34]. Practical imaging systems applying the
summation—subtraction method for limited diffraction beams
will have to compromise between the efficacy of the sidelobe
reduction and the system complexity. A detailed study of the
compromise is found in [34].

E. Phase Aberration

In biomedical imaging, phase aberration could be strong in
some cases such as breast imaging if the size of a transducer is
large [35]. Distortion of beams caused by the phase aberration
could alter limited diffraction beams from their theoretical
descriptions and, thus, diminish the sidelobe reduction.

F: Edge Waves

Although sidelobes of limited diffraction beams can be
reduced by the summation-subtraction method, edge waves
are not reduced. However, the sidelobes of the edge waves
are also reduced (this can be seen by doing a log compression
on the linear gray scale of the images in Figs. 4 and 6).

Axial pulse-echo responses of both limited diffraction beams
and conventional beams with a point scatterer located on the
propagation axis are shown in Fig. 9. 1t is seen that edge waves
exist for all beams except for a focused beam at the focus.
Since the pulse-echo responses of the higher-order limited
diffraction beams are zero for a scatterer located on the wave
axis, the edge waves of the limited diffraction beams shown
in Fig. 9 are the same before and after the sidelobe reduction.

The amplitude of the edge waves in Fig. 9 is smaller than
that of the main pulses. The edge waves will be smaller if
z/D < 1, where z and D are the axial distance and the
diameter of a transducer. Therefore, the total energy of the
edge waves would be much smaller than that of the main
pulses. Despite the small total energy, edge waves could be
a source of artifacts in imaging producing ghost objects or
lower contrast of small cysts.

The number of edge waves of X waves is larger than that of
other beams (see Fig. 9(a)). This is because the X waves are
composed of two back-to-back cones that have more edges.
One way to reduce the edge waves is to apodize the edge
of the transducer aperture [20]. However, this will reduce the
depth of field of the limited diffraction beams and weaken
their depth-independent lateral beam properties.
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Fig. 6. Envelopes of the simulated X' wave pulse-echo images of the object in Fig. 3 at four axial distances: 50 mm (first column), 100 mm (second
column), 150 mm (third column), and 216 mm (fourth column) in the same format as that of Fig. 4.

G. Frame Rate

Because three A-lines are needed for the summation-
subtraction method to reduce sidelobes of limited diffraction
pulse-echo systems at each transducer position, the imaging
frame rate will be reduced to 1/3. Use of additional higher
order limited diffraction beams could reduce further the
sidelobes but lower further the imaging frame rate [27], [36].
The price paid for the sidelobe reduction of the limited
diffraction pulse-echo systems is similar to that paid for
increasing the depth of field of conventional focused beams
that have low sidelobes only at their focuses. The depth of
field of the conventional beams is increased by montaging
images cut around several focal lengths, each produced by a
separate transmit also reducing the imaging [rame rate.

Although sidelobes are reduced or depth of field is increased
at the expense of imaging frame rate, limited diffraction
pulse-echo systems have the following advantages: First, the
nonspreading property of limited diffraction beams is pre-
served after the sidelobe reduction. The limited diffraction
pulse-echo systems will have a depth-independent lateral point
spread function. In addition. the peint spread function is
nondispersive for X' waves. This means that th eX wave
pulse-echo imaging system has alse a depth-independent axial
resolution (see Fig. 6). With depth-independent point spread
function, restoration of images throughout the depth of field
could be simplified if the objects imaged do not have strong
phase aberration and multiple scattering. Second, the main
beamwidth (or focusing property) of the sidelobe-reduced
limited diffraction beams will not depend on speed of sound of
the materials imaged [9], [13] although the depth of field of the
beams may be changed. This is convenient for nondestructive
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Fig. 7. Lateral line plots of theXwave pulse-echo images of the rightmost
point scatterer in Fig. 3 shown in the same format as that of Fig. 5.

evaluation of materials of different speeds of sound with the
same imaging system. Third, the summation and subtraction
of A-lines could be simpler to do electronically compared to
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Fig. 8. Subtraction between RF A-lines and between envelope A-lines. These
A-lines are obtained from Fig. 4 where the Besse] beams are used in both
transmil and receive. The axial distance for these A-lines is 150 mm away
from the surface of the ransducer and the lateral distance is —25 mm (first
lines on the top of the comesponding images). (a) Two RF A-lines obtained
wilh the zeroth- (full ling) and second-order (dotted line) Bessel beams, (b)
subtraction of the two RF A-lines, (c) the envelopes of the RF A-lines in Panel
(), and (d) subtraction of the envelope A-lines. After removing the carrier
frequency, the sidelobes are reduced further after the sublraction. Note that
the vertical scales are different for A-lines before and after the subiraction.

the montage process although both metheds would be subject
to motion artifacts. After increasing the depth of field by
the montage process, conventional focused beams are still
diffracting because the size of the focal spot increases with
depth dramatically as the f-number increases. In addition,
focal lengths of focused beams change with the speed of sound
of the materials imaged.

H. Receive with Conventional Focused Beam

Limited diffraction beams have a large depth of field but
have higher sidelobes than conventional focused beams at their
focuses. Therefore, pulse-echo systems that transmit a limited
diffraction beam and receive with a conventional focused
receiver may combine the advantages of both beams. For
this “hybrid™ system, sidelobe reduction with the summation-
subtraction method is seen in Fig. 10. However, the sidelobe
reduction may not be as great if point scatterers are randomly
distributed in multiple azimuthal angles because the angular-
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Fig. 9. Axial pulse-écho responses (normalized 1o their maxima) showing
edge waves of (a) X wave, (b) Bessel beam, (¢) unfocused Gaussian beam.
and (d) focused Gaussian beam (f = 100 mm), with a point scatterer located
on the wave axis at four distances: 50 mm (full lines), 100 mm (dotted lines),
150 mm (dashed lines), and 216 mm (long dashed lines). The parameters ol
the X wave and Bessel beam are given in Section IIl. The Gaussian beams
have a full width at half maximum (FWHM) of 25 mm that is the radius
of the transducer. Edge waves exist for all beams except focused beams at
their focuses. The axial distance is calculated by assuming the speed of sound
c = 1.5 mm/pus.

dependent terms of these hybrid systems may not be removed
(recall that in the limited diffraction pulse-echo systems,
cos? mep + cos? m(gp — 7 /(2m)) = 1, see (10) and (11)).

1. Previous Work

Similar methods have been used for a ring transducer [27]
and a hybrid Axicon system [28] to reduce the sidelobes.
For the ring transducer, a different approach was used which
employed a progressive (rotating) phase term, ¢f(m{@—#0)—wt)
(instead of cos m(¢ — ¢p)e™* as in (5) and (6)) in transmis-
sion, and another term of opposite phase, ef{~™¢—do)—wt]
in reception to cancel each other. Since the exponential phase
terms are realized by delaying signals around the ring, the
imaging system must be coherent and is not good for broad-
band applications. Moreover, the Bessel lateral field distribu-
tions that are required for the sidelobe reduction can only be
produced in the far field of the ring (the Fraunhofer region
[29] where the pressure field is proportional to the Fourier
transform of the transducer aperture). Therefore, sidelobes can
only be reduced in the far field. The far field application of
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Fig. 10. Lateral line plots of the “hybrid"” pulse-echo images of the rightmost
point scatterer in Fig. 3. where an.\'wave is used in transmit and a conven-
tional focused Gaussian beam in receive. The Gaussian beam has a full width
at half maximum (FWHM) of 25 mm at the transducer surface and a focal
length of 120 mm. The plots are obtained at four axial distances: () 50 mm, (b)
[20 mm, (c) 50 mm, and (4) 26 mm. The vertical axes of the plots represent
the maximum of the envelope of each A-line of the rightmost point scatterer.
The dotted lines represent the plots before the sidelobe reduction, The full and
dashed lines correspend to sidelobe-reduced images obtained from subtraction
with RF and envelope signals, respectively. The lateral axes are normalized to
the central wavelength of the beams (0.6 mm). The reduction of sidelobes of
this “hybrid” pulse-echo system will be diminished if scatterers are randomly
distributed around the beam center because the angular-dependent terms of
the system may not be removed.

the ring transducer may lower lateral resolution because the
width of the mainlobe of the zeroth-order Bessel function is a
linear function of the distance to the surface of the transducer
(for limited diffraction beams, the width of the mainlobe is
constant in their large depth of field). To increase the lateral
resolution, a big ring transducer must be used and this could
cause severe phase aberration problems in medical imaging
[35] (in [27], a 100-mm diameter ring was used and objects
imaged were placed between 200 and 400 mm away from the
transducer to avoid the near field and the loss of the lateral
resolution). In addition, energy efficiency of a ring transducer
is poor since the radiating area of the transducer is small.
For the hybrid Axicon system where an Axicon is used
to transmit and a focused annular array is used to receive,
no sidelobe reduction was reported when the system was
applied to imaging of biological soft tissues [28]. The reasons
perhaps are the following: First, this system is similar to
that which transmits with a limited diffraction beam and
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receives with a focused beam as discussed above. Therefore,
the efficacy of the summation-subtraction method for sidelobe
reduction is diminished when objects imaged are made of
random scatterers such as biological soft tissues (recall that
cos? me + cos® m(¢ —x/(2m)) = 1 is only for systems that
use limited diffraction beams in both transmit and receive).
Second, demodulaied images [28] (or envelope) instead of RF
images were used. No sidelobe reduction will be obtained this
way even if the Axicon had been used in both transmit and
receive. In addition, the pressure field distribution of an Axicon
in its focal zone is only approximately proportional to the
Bessel functions when excited with a CW signal [37]. Analytic
expressions similar to (5) and (6) of the Bessel beams and X
waves are difficult to obtain for the Axicon. The complexity of
the pressure field distribution of the Axicon might reduce the
efficacy of the summation—subtraction method for its sidelobe
reduction.

J. Applications

The summation—subtraction method for sidelobe reduction
of limited diffraction pulse-echo systems might have appli-
cation in medical imaging. It might increase contrast while
keeping the high resolution, large depth of field, and depth-
independent point spread functions of the limited diffraction
pulse-echo systems. The summation-subtraction method could
also be applied to biological tissue characterization, where
thinner beams (smaller sidelobes) with no beam diffraction are
desirable. The method could also reduce multiple scattering
due to sidelobes in nondestructive evaluation, while keep-
ing depth-independent resolution (point spread function) and
material-independent focusing properties. In addition, limited
diffraction beams with lower sidelobes might have applications
in other wave-related areas such as electromagnectics [1]-[3]
and optics [4].

VI. CONCLUSION

A summation—subtraction method for reducing sidelobes of
limited diffraction beams is described. This method was de-
rived theoretically and verified with computer simulations for
a finite aperture transducer. The results are very encouraging.
Around 20 dB of sidelobe reduction is obtained for pulse-
echo systems at a lateral distance of about 40 wavelengths.
The reduction of sidelobes are increased monotonically with
lateral distance. This method could have applications to medi-
cal imaging, tissue characterization, nondestructive evaluation
of materials, as well as other wave-related areas such as
electromagnetics and optics, if movement of objects studied is
negligible during the period required for acquisition of three
A-lines.

VII. APPENDIX A

We will verify that (see (5))

@5 (5) = Jm(ar) cos m(¢p — )@=«
m=0,1,2,.-. (A1)

is an exact solution to the three-dimensional source-free,
loss-less, and isotropic/homogeneous scalar wave equation in
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cylindrical coordinates [20]

1a9( 06y, 10 &
ror\ ar) 12042 T 822

where r = y/z? — y? represents a radial coordinate, ¢ is an
azimuthal angle, z represents an axial axis that is perpendicular
to the plane defined by r and ¢, ¢ is time and & represents
acoustic pressure or Hertz potential that is a function of r, ¢,
z, and t.

Substituting (A1) into (A2), we have

1 62

Lo 0y 12 B 18,
ror\'or) 12042 922 2o "
1 [) m
= cos m( — go)e’ 1) —  Imlar)
ror dr
1 @ cos m(¢p — ¢ho)
Sz —w
+ T (or)e™t f)_2 o
J ] 62 1 d! i(fr—w
+ Jn(ar) cos m(¢ — o) (ﬁ = (—2@) giAzat]

b
=(T—n~ﬁ(1 )q’,; +( i )@J
[ T

2
& (‘:’—2 = ﬁz)q).f,“. (A3)

Since
(A4)

the right-hand side of (A3) is zero, ie.. (Al) is an exact
solution of (A2). Similarly, one can prove (6) is also an exact
solution of (A2).

VIII. APPENDIX B

Derivation of a formula for calculating the pulse-echo
response of any-order Bessel beam or X wave from a point
scatterer under the Fresnel approximation [29].

Suppose that a transducer has an aperture of a radius,
a, located at z = 0 (see Fig. 11), the wave field at a
spatial point ¥y = (xg,o.2) can be calculated with the
Rayleigh-Sommerfeld diffraction formula [29]

ff 7o w)e® 2 dry deby
o1
] lﬂrm
'77T 131

where the first and second terms represent high and low
frequency contributions, respectively, $(7y,w) is the wave
field at the spatial point 7 and is the Fourier transform
of ®(ry,t), ®(r,w) is the wave field at a point 73 =
(&1,y1,0) (source point) on the surface of the transducer
and is the Fourier transform of ®(7,t), r1 = /237 + i,
¢1 = tan~! (y1/x1), A is the wavelength, and rq; is the
distance between the field point 75 and the source point 17,
which is given by

ro1 = / (wo — x1)?

——7ridridg(B1)

+{yo — ;)2 + 2% (B2)

If we study the field on the plane yy = 0, the distance between
the source and field points will be simplified (for the Bessel
beams and X waves, fields on different planes can be obtained
by rotating the transducer, i.e., changing ¢y, see (5) and (6)).
Substituting &1 = r1 cos ¢ and i1 = 71 sin ¢y into (B2), we

have
ro1 = \f.-t:g%-zg\/l +

With the Fresnel approximation (where r; and zg <«
Vx4 + z? and this condition is satisfied in our simulations),
ro1 in the denominators and phase terms of (B1) can be

approximated by
ro1 & 4/ 2p + 22
‘ ri ToT COS By
L -
Toy & \Jwf + 22+ S
2 \/aru + z= \/zﬂ + 2

respectively. Substituting (B4) and (B5) into (B1), one obtains

B(7 1 1 zetkV/=
(Fo,w) = St i) @+

a . S
. / él('rl, w)eik[f‘;/z\!.vs-{-z")
0
4 |:f7r C_.ik(m"r‘/\/m cos @y
—m

- COS 'Wb((b]_ — (ﬁg)d(f)d’rl fi'n"l (BG)
(rl, ) cos m(p1 — o) (see (5) and (6)).

r — 2zqry €08 ¢

3
z%+ 22 B3)

(B4)
and

(B5)

where @(7,w) =
Since [31]
(B7)

eﬂim:-—/z T
Jn(z) = ——/ %% % cos mepdep

27

-7

(B6) can be rewritten as (note that cos m(ds — ¢o) =
cos iy cos mha + sin ¢ sin ¢y and integration of an odd
function from —7 to w is zero)

B(70,w) = | =+ ——t zei(b/mi = 4m/2)
POT\R T ) @

a
- o8 mqboj ©y(ry,we ik(ri/2y/7}

0

o (A%) rodry (BS)
where
&, (ry,w) = 20T (W) (1) (B9)
for Bessel beams (see (5)), and
By (ry,w) = —B (K) T (krisin Q) H(R)e™ " (B10)

for X waves (see (25) in [20] or (6) in the text). Equation
(B8) can be used for calculating any-order Bessel beams or
X waves under the Fresnel approximation. It drops a double
integration in (B1) to a single one, reducing the computation
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Fig. 11. Polar coordinate system for the derivation of a formula for calcu-
lating pulse-echo response of Bessel beams or X ‘waves of any order under
the Fresnel appreximation. The wave sources and the receivers are located at
71 = (#1.41,0), and the point scatterers are located at 7y = (2q,0,2). The
distance between i and 7 is rop-

time significantly. From (B8), it is seen that the field of the
limited diffraction beams at 7y changes as a cosine function,
cos iy, as the transducer rotates around its axis.

From the reciprocal principle and (B8), a formula for
calculating the pulse-echo response of any-order Bessel beam
or X wave for a point scatterer located at 7 (point spread
function) under the Fresnel approximation can be obtained

e(7o, t) = cos® meoF {&% (7o, w)} (B11)
where
= 27 1 zei'(k Vg2 tmm/2)
(I)A (‘J"U 3 ..u‘) =

e .
B g+ (22 + 22)
/ &, (ry,w)e 0/ 2V/EHD
0

ToTy
Vxi + 22

and where F ! is the inverse Fourier transform with respect
o w.

From (B11), the éhvclnpc of the point spread function of
a limited diffraction pulse-echo system after the summation-
subtraction of A-lines is given by

I | =k ridiry (B12)

leo(To,t) — [ea(To, t)|wy=0 + €2(T0, t)|pg=r/4]|

= |f_l-{i3ﬁ0(ﬁ),w) *éizfﬁhw)}' (B13)

where ®40(f0,w) = @470, w)|m=o and Paa(Fo,w) =
I A(Th,w)|m=2. This means that the sidelobes of the limited
diffraction pulse-echo systems can be reduced with the
summation—subtraction method if

32 e 0, 7o € mainlobe
A2VOHI T @2 (7o w), 7o € sidelobes.

ACKNOWLEDGMENT

The authors appreciate the secretarial assistance of Elaine
C. Quarve and the graphic assistance of Julie M. Patterson.

745

REFERENCES

(1] J. N. Brittingham, “Focus wave modes in homogeneous Maxwell's
equations: Transverse electric mode,” J. Appl. Phys., vol. 54, no. 3,
pp- 1179-1189, 1983.

[2] R. W. Ziolkowski, “Exact solutions of the wave equation with complex
source locations,” J. Math. Phys., val, 26, no. 4, pp. 861-863, Apr. 1985,

[3] R.W. Ziolkowski, D. K. Lewis, and B. D. Cook, “Evidence of localized
wave transmission,” Phys. Rev. Letr., vol. 62, no. 2, pp. 147-150, Jan.
9, 1989.

[4] J. Dumin, “Exact solutions for nondiffracting beams. I The scalar
theory,” J. Opt. Soc. Amer., vol. 4, no. 4, pp. 651-654, 1987.

[5] 1. Dumin, J. I. Miceli, Jr., and J. H. Eberly, “Diffraction-free beams.”
Phys. Rev. Lett., vol. 58, no. 15, pp. 14991501, Apr. 1987.

[6] K. Uehara and H. Kikuchi, “Generation of near diffraction-free laser
beams,” Appl. Phys. B, vol. 48, pp. 125-129, 1989.

[7] A. Vasara, J. Turunen, and A. T. Friberg, “Realization of general
nondiffracting beams with computer-generated holograms,” J. Opt. Soc.
Amer. A, vol. 6, no. 11, pp. 1748-1754, 1989,

[8] D.K.Hsu, F.J. Margetan, and D. O. Thompson, “Bessel beam ultrasonic
transducer: Fabrication method and experimental results,” Appl. Phys.
Lert., vol. 55, no. 20, pp. 2066-2068, Nov. 13, 1989, _

[9] 1. A. Campbell and S. Soloway, “Generation of a nondiffracting beam
with frequency independent beam width,” J. Acousr. Soc. Amer., vol.
88, no. 5, pp. 2467-2477, Nov. 1990.

[10] 1. Lu and J. F. Greenleaf, “Ultrasonic nondiffracting transducer for
medical imaging,” JEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol.
37, pp. 438447, Sept. 1990.

[11] —— *“Pulse-echo imaging using a nondiffracting beam (ransducer,”
Ultrasound Med. Biol., vol. 17. no. 3, pp. 265-281, May, 1991.
“Evaluation of a nondiffracling transducer for lissue character-
ization,” in [EEE 1990 Ultrason. Symp. Proc., vol. 2, pp. 795-798,

1990.

[12]

[13]

“Producing deep depth of field and depth-independent resolution
in NDE with limited diffraction beams.” Ultrason. Imaging, vol. 15, no.
2, pp. 134-149, Apr. 1993,

“Formation and propagation of limited diffraction beams," Acons-

tic Imaging, vol. 20, to be published.

—— “Effect on .Jy nondiffracting beam of deleting central elements of

Jy annular array transducer,” Ultrason. Imaging, vol. 13, na, 2, p. 203,

Apr. 1991 (Abs.).

“Simulation of imaging contrast of nondiffracting beam trans-

ducer.” J. Ultrasound Med., vol. 10, no. 3. (suppl.). p. 54, Mar. 1991

(Abs.).

“Experiment of imaging contrast of Jy Bessel non-diffracting

beam transducer,” J. Ultrasound Med., vol. 11, no. 3, (suppl.), p. 543,

Mar. 1992 (Abs.).

“Sidelobe reduction of nondiffracting pulse-echo images by de-

convolution,” Ultrason. Imaging, vol. 14, no. 2, p. 203, Apr. 1992

(Abs.).

“New development in beam propagation,” J. Ultrasound Med., vol.

12, no. 3, (suppl.), p. 529, Mar. 1993 (Abs.).

—— “Nondiffracting X waves—Exact solutions to free-space scalar

wave equation and their finile aperture realizations,” [EEE Trans.

Ultrason., Ferroelec., Freq. Cont., vol. 39, pp. 19-31, Jan. 1992,

“Experimental verification of nondiffracting .\ waves,” JEEE
Trans. Ultrason., Ferroelec., Freq, Cont., vol. 39, pp. 441-446, May
1992,

[22] J. Lu and J. F. Greenleal, “Theory and acoustic experiments of non-

diffracting X' waves,” [EEE 1991 Ultrason. Symp. Proc., vol. 2, pp.

1155-1159, 1991,

T. K. Song, J. Lu, and 1. F. Greenleaf, “Modified.X waves with improved

field properties,” Ultrason. Imaging, vol. 15, no. 1, pp. 3647, Jan. 1993.

[24] J. Lu and J. F. Greenleaf, "Diffraction-limited beams and their applica-
tions for ultrasonic imaging and lissue characterization,” in Proc. SPIE
New Developments in Ultrasonic Transducers and Transducer Systenis,
vol. 1773, F. L. Lizzi. Ed., 1992, pp. 92-119.

[25] I. Lu, T. K. Song, R. R. Kinnick, and J. F. Greenleaf, * In vitro and in
vivo real-time imaging with ultrasonic limited diffraction beams,” IEEE
Trans. Med. Imaging, vol. 12. Dec. 1993 (to be published).

[26] J. Lu and ). F. Greenleaf, “Steering of limited diffraction beams with a
two-dimensional array transducer,” in IEEE 1992 Ultrasan. Symp. Proc.
vol. 1, pp. 603-607, 1992.

[27] C. B. Burckhardt, P. A. Grandchamp, H. Hoffmann, “Methods for
increasing the lateral resolution of B-scan,” Acoustic Holography, vol.
5, 1973, pp. 391413,

[28] M. S. Paterson, F. S. Foster, and D. Lee, “Sidelobes and speckle
reduction for an eight sector conical scanner,” in [EEE 1981 Ulrason.
Symp. Proc., vol. 2, pp. 632-637, 1981.

[14]

[15]

(18]

[17]

(18]

[19]

[23



746 \EEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 40, NO. 6, NOVEMBER 1993

[29] 7. W. Goodman, [atroduction te Fourier Optics.  New York: McGraw-
Hill, 1968, chaps. 2—.

[30] F. John, Partial Differential Equations.
1982.

[31] P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Part 1.
New York: MeGraw-Hill, 1953.

[32] R. Bracewell, The Fourier transform and its Applications.
McGraw-Hill, 1965, chaps. 4 and 6.

[33] A. V. Oppenheim and R. W. Schafer, Digital Signal Processing. En-
glewood Cliffs, NJ: Prentice-Hall, 1975, chap. 3.

[34] J. Lu and J, F. Greenleafl, “A study of sidelobe reduction for limited
diffraction beams,” in [EEE 1993 Ultrason. Symp. Proc., 1993 1o be
published.

[35] B. D. Steinberg and Q. Zhu, “Measurement of resolution in the breast
versus size of the imaging aperture,” J. Ultrasound Med., vol. 12, no.
3, (suppl.), p- 89, Mar. 1993 (Abs.).

[36] 1. P. Wild, “A new method of image formation with annular apertures
and application in radio astronomy,” in Prac. Royal Seciety, A, vol.
286, pp. 499-509. 1963.

[37] M. 8. Pauterson and F. 8. Foster, “Acoustic fields of conical radiators,”
IEEE Trans. Sonics Ultrason.. vol. SU=29, pp. 83-92, Mar. 1982

New York: Springer-Verlag,

New York:

Jian-yu Lo (M'88) was born in Fuzhou, Fujian
Province, People’s Republic of China, on August
20, 1959, He teceived the B.S. degree in electrical
engineering in 1982 from Fudan University, Shang-
hai, China, the M.S. degree in 1985 from Tongji
University, Shanghai, China, and Ph.D. degree in
1988 [rom Southeast University, Nanjing, China,

He is currently an Associate Consultant al the
Biodynamics Research Unit, Department of Physi-
ology and Biophysics. Mayo Clinic. Rochester, MN,
and he is an Assistant Professor of Biophysics at
the Mayo Medical School. From March 1990 to December 1991, he was a
Research Associate at the Biodynamics Research Unit, and from December
1988 1o February 1990, he was a Post-Doctoral Research Fellow there. Prior to
that, he was a faculty member of the Department of Biomedical Engineering,
Southeast University, Nanjing, China and worked with Prof. Yu Wei. His
research interesls are in acoustical imaging and lissue characterization, medical
ultrasonic transducers, and ultrasonic beam propagation,

Dr. Lu is a recipient of the IEEE UFFC Outstanding Parer Award in the
1992 TransacTIONS. He is a member of the IEEE UFFC Society, American
Institue of Ultrasound in Medicine, and Sigma Xi.

James F. Greenleaf (M’'73-SM'84-F'88) was
born in Salt Lake City, UT, on February 10, 1942.
He received the B.S. degree in electrical engineering
in 1964 from the University of Utah, Salt Lake
City, the M.S. depree in engineering science in
1968 from Purdue University, Lafayette, IN, and the
Ph.D. degree in engineering science from the Mayo:
Graduate School of Medicine, Rochester, MN, and
Purdue University in 1970.

He is a Professor of Biophysics and Medicine,
Mayo Medical School, and Consultant, Biodynam-
ics Research Unit, Department of Physiology and Biophysics, and Cardiovas-
cular Disease and Medicine, Mayo Foundation. His special field of interest
is ultrasonic biomedical imaging science and has published more than 150
articles and edited four books.

Dr. Greenleaf has served on the IEEE Technical Committee of the Ultra-
sonics Symposium since 1985. He served on the [EEE-UFFC Subcommitree
for the Ultrasonics in Medicing/IEEE Measurement Guide Editors, and
on the IEEE Medical Ulirasound Comimittee. He is the President of the
UFEC Society. He holds five patents and is the recipient of the 1986
J. Holmes Pioneer Award from the American Institute of Ultrasound in
Medicine, a recipient of the JEEE UFFC Oustanding Parer Award in the
1992 TRaNsaCTIONS, and is a Fellow of the 1IEEE and the AIUM. He is the
Distinguished Lecturer for the IEEE UFFC Society for 1990-1991.



