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Application of Bessel Beam for
Doppler Velocity Estimation
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Abstract— Limited-diffraction beams have a large depth of
field and could be applied to medical imaging, tissue character-
ization, and nondestructive evaluation of materials. This paper
reports the application of limited-diffraction beams, specifically,
the Bessel beam, to Doppler velocity estimation. The Bessel
beam has the advantage that velocity estimation is less subject
to the depth of moving objects and the Doppler spectrum has
distinct shoulders that increase the accuracy of velocity (both
magnitude and Doppler angle) estimation in noisy environments.
The shoulders of the Doppler spectrum might also help in solving
the inverse problem, e.g., estimation of the velocity distribution
in vessels.

I. INTRODUCTION

THE Doppler effect was discovered by the Austrian physi-
cist, Christian Doppler in 1843 [1]. It has been applied to

electromagnetic waves [2] and medical ultrasound such as the
estimation of blood flow with backscattered continuous wave
(CW) [3], pulsed wave (PW) [4], imaging of blood vessels
[5], and color flow mapping [6]. Recently, Doppler spectral
broadening due to the beam geometry has been analyzed [7]
and applied to the estimation of the flow velocity component
that is perpendicular to the beam axis [8]–[13].

In previous studies, beams designed to use the Doppler
effect or spectrum broadening were either plane waves or
conventional focused beams. The plane wave can not define
a lateral position and thus has low resolution in imaging.
Conventional focused beams can produce high resolution at
their focuses but have a short depth of field and thus the shape
of their Doppler spectra may change with depth.

The first beam that can focus over a large depth was
found in electromagnetics by Brittingham [14] and was called
focus wave mode (FWM). The FWM was further studied
by Ziolkowski et al. [15], [16]. Limited-diffraction beams,
which were originally called nondiffracting beams, were first
discovered by Durnin in 1987 [17]. These beams have a large
depth of field [18]–[23] and might have applications in medical
ultrasonic imaging [24]–[26], tissue characterization [27], [28],
and nondestructive evaluation of materials [29], and other
physics related areas such as electromagnetics [30], [31] and
optics [32]–[40]. Because of the large depth of field of the
limited diffraction beams, theoretically, flow estimation with
these beams should be depth-independent.
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With the Doppler effect, one can only estimate the velocity
component that is parallel to the beam axis. Doppler spectrum
broadening which is caused by amplitude modulation of the
received signal, is related to the velocity component that is per-
pendicular to the beam axis. From these two components, the
magnitude of velocity and its angle with the beam axis can be
calculated. It has been shown that the maximum and minimum
frequency points of the Doppler spectrum of a conventional
focused piston beam are independent of the axial distance of
a moving object [11]. However, the shape of the Doppler
spectrum may change with distance. For example, the shape of
the Doppler spectrum of a focused piston beam is triangular
only near the focus [9]. Therefore, in a noisy environment
where the maximum and the minimum frequency points of
the spectrum are difficult to measure directly, it is difficult to
obtain a consistent estimation of the bandwidth of the spectrum
and thus the velocity component that is perpendicular to the
beam axis over distance. Furthermore, for a focused Gaussian
beam, theoretically, there are no finite maximum and minimum
frequency points in the Doppler spectrum at the focal plane
(the Fourier transform of a Gaussian function is Gaussian). In
this case, the estimation of bandwidth and thus the transverse
velocity component of a moving object depends entirely on
the shape of the spectrum.

In this paper, we apply limited-diffraction beams, specifi-
cally, the Bessel beam [17], to velocity estimation using the
Doppler effect. Because the Bessel beam has a large depth
of field, both the shape and the maximum and minimum
frequency points of its Doppler spectrum are less dependent
on the distance of moving objects. In addition, the Doppler
spectrum of the Bessel beam for an object moving at a constant
velocity has distinct shoulders representing the lower and
upper boundaries of the spectrum that are related to both the
angle and the magnitude of the velocity of the object. Because
of the shoulders, the velocity vector estimation may be more
accurate and less subject to noise. These features of the Bessel
beam are derived theoretically, demonstrated with computer
simulation, and verified with experiment.

In the following, we first derive the Doppler spectra of a
Bessel beam for various moving objects. Then we demonstrate
the theoretical results with computer simulation. Experimental
results are then reported. Finally, we give a brief discussion
and conclusion.

II. THEORY

We first give the formula of a limited-diffraction beam,
specifically the Bessel beam, and then derive the Doppler
spectra for various moving objects.

0885–3010/95$04.00  1995 IEEE



650 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 42, NO. 4, JULY 1995

(a)

(b)

(c)

Fig. 1. Velocity estimation with a Bessel beam. The axis of the Bessel beam
is at x = 0 and y = 0. zA is the distance between the intersection of the
projection of the velocity, ~v, on the plane y = 0 and the surface of the
Bessel transducer. Because the Bessel beam is axially symmetric, we can
always assume that the velocity, ~v, is in parallel with the plane, y = 0. P0
represents a point receiver or a point scatterer located at (x0; y0; z0) (Panel
(a)). L = 50mm is either the length of a smooth line segment (Panel (b)) or
that of a line of random scatterers (Panel (c)) moving at the velocity, ~v. L is
centered at (0; 0; zA) when time t = 0. � and �1 are complementary about
�. �1 is used to indicate the Doppler angle for all other figures that show a
positive frequency shift when �1 < �=2.

A. Bessel Beam

One of the limited-diffraction beams, called the Bessel
beam, is given by [17]

(1)

where is a complex constant that relates to the gain and
initial phase of a system (without losing generality, we assume

), represents the pressure or velocity potential of
an acoustic wave (or scalar components of an electromagnetic
wave), is the zeroth-order Bessel function of the first
kind, represents a point in space, ,

is the azimuthal angle in a transverse
plane of the beam, is the axial distance, is time,
denotes a scaling factor that determines the beam width,

, in which is the wave number,
is the angular frequency and is the frequency, and

is the speed of sound in the medium.
If the Bessel beam is approximately produced with a finite

aperture, it has a finite depth of field

(2)

which is much larger than that of a conventional beam (where
is the radius of a circular aperture).

B. Doppler Spectrum of Signal Measured by a Moving Receiver

We first describe the one-way Doppler spectrum in which
a point receiver moves in a Bessel beam. This simple case
will demonstrate the fundamentals to be used in the theoretical
analysis of the two-way (pulse-echo or backscattered) Doppler
spectrum. Assume that a point receiver is located in the plane,

, moving at a velocity, , across the axis of a Bessel
beam at an angle, (Fig. 1(a)). The motion of the receiver
can be described with

(3)

where the coordinates, , represent the original po-
sition of the receiver (at ). If we ignore the secondary
Doppler effect (the Doppler effect caused by the change of
or ) in (1), the signal received is given by

(4)

where , is the transmitted frequency,
, and .

Eq. (4) can be rewritten as

(5)

From the definition of the Fourier transform [41]

(6)

and the shift and modulation theorems [42], the spectrum of
(4) is given by [43]

(7)

where

(8)

For other that do not satisfy (8), . This means
that the spectrum of the received signal (see (4)) has a finite
bandwidth where the boundaries and the central frequency of
the spectrum are related to the velocity, . In either (5) or (7),
it is seen that the axial distance, , appears only in the constant
phase term, , and does not affect the magnitude or the
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Fig. 2. Simulated Doppler spectra of a moving point receiver (one-way) (Panels (1) to (4)) and a point scatterer (backscattered) (Panels (5) to (8)) at the
plane, y = 0, in the Bessel beam with the scaling factor, � = 1202:45 m

�1, and frequency of 2.5 MHz. The point was located at x0 = 0 when t = 0.
The upper and lower 4 panels are the spectra obtained with the time window, t1 = 1s and 66:7 ms, respectively. The time interval was [�t1=2; t1=2]

and was weighted with a Blackman window. The panels in the first and the third rows were obtained with the Doppler angle of 45 degrees, while the
panels in the second and the fourth rows were obtained at 60 degrees. The velocity and the axial distance, zA (see Fig. 1), of the point, P0, were 0.3
m/s and 120 mm, respectively. At this velocity, the moving distance of the point was 300 mm and 20 mm for t1 = 1s and 66:7 ms, respectively. The
vertical bars show the theoretical predication of the lower and upper boundaries (dotted lines) and the frequency shift (full line) of the spectra (see (9)
to (11) for a moving point receiver, and (24) and (25) for a point scatterer).

shape of the Doppler spectrum. This means that the estimation
of the velocity will not be influenced by the distance of the
point receiver if a perfect Bessel beam is used.

From (8) one obtains the lower and upper boundaries of the
spectrum (abrupt cut-offs in the spectrum (Figs. 2(1) and (2))),

(9)

and

(10)

respectively, where

(11)
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is the shifted central frequency,

(12)

is the frequency shift (see (8)), and

(13)

is the bandwidth of the spectrum (Figs. 2(1) and (2)), where
(Fig. 1(a)) (for , the velocity has a

component that is toward the transducer and thus the frequency
shift, , is positive). Note that the bandwidth, , is not
a function of the frequency of the beam, and the Doppler
spectrum has the same shape ((8) and (12)) at any central
frequency, . This is different from that of a conventional
focused beam where the bandwidth of the Doppler spectrum
is a linear function of the central frequency [9].

Once we measure the frequency shift, , and the band-
width, , the velocity of the point receiver and the angle
between the velocity and the beam axis can be calculated

(14)

and

when (15)

or

when (16)

At , the Doppler spectrum (see (7)) is not varied.
The Doppler spectrum in this case must be obtained from the
Fourier transform of (4) with directly,

(17)
Since , the point receiver is moving directly away from
the source (Fig. 1(a)) resulting a negative frequency shift,

, from . The magnitude of the spectrum is a function of

the position of the point receiver and the
Doppler spectrum has a zero bandwidth (see the function
in (17)).

If , the Doppler spectrum can be obtained directly
from (7)

(18)

and one sees no shift in the central frequency but a maximum
bandwidth of the Doppler spectrum, .

Equation (7) has the following property

(19)

where

otherwise
(20)

is obtained from (7) with . This implies that the
Doppler spectrum for a moving point receiver is under the
curve defined by (20) which is peaked at the spectrum
boundaries and has a minimum at the central frequency,

(Figs. 2(1) and (2)). The peaks at the boundaries
makes it easy to determine the bandwidth of the spectrum and
thus the Doppler angle (see (15)).

It is noted from (4) that if , the maximum amplitude
of the received signal will decrease rapidly and monotonically
with . This means that the signals received off the plane,

, may be negligible.

C. Doppler Spectrum from a Moving Point Scatterer

If the Bessel transducer in Fig. 1 is used as both a transmitter
and a receiver [25], the received signal that is backscattered
from a point scatterer is given by [44]

(21)

where the subscript “b” represents “backscattered”. The
Doppler spectrum (Figs. 2(5) and (6)) of the received signal
is the Fourier transform of (21)

(22)
where “*” represents the convolution with respect to , and

(23)

which is the Fourier transform of the term inside the square
bracket in (21) and is similar to (7).

Because is convolved with itself in (22), the
bandwidth of the backscattered Doppler signal is doubled from
that of the signal of a moving point receiver (see (13)), i.e.,

(24)

The central frequency of the backscattered Doppler signal can
be obtained from the expression of in (22), i.e.,

(25)

The equations for calculating the lower and upper boundaries
of the backscattered Doppler spectrum are the same as (9)
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Fig. 3. Simulated Doppler spectra of the backscattered signals from a moving smooth line segment of length of 50 mm (see Fig. 1) in the Bessel beam
described in Fig. 2. The line segment was in the plane, y = 0. Its velocity was 0.3 m/s and the axial distance, zA, was 120 mm. A larger Blackman-weighted
time window, t1 = 1s, as in Fig. 2 was applied to the backscattered signals. Panels (1) to (10) correspond to the Doppler angle of 45 to 90 degrees
with an increment of 5 degrees. The spectra at 85 and 90 degrees were distorted because a 75 Hz wall filter (high-pass filter) was added. The vertical
bars show the theoretical predication of the lower and upper boundaries (dotted lines) and the frequency shift (full line) of the spectra (they are the same
as those of a point scatterer in Fig. 2 and are obtained from (24) and (25)).

and (10). However, and in those equations need to be
replaced with and in (24) and (25).

D. Doppler Spectrum from a Moving Line Segment

For a smooth line that is infinitely long and moves in the
direction of the line, there will be no Doppler shift. However,
if the line has a finite length, one will see the motion of the end
points of the line and thus may obtain Doppler spectrum. In
this case, we found an interesting spectrum that is composed

of three peaks corresponding almost exactly to the central
frequency, and the lower and upper boundaries of the spectrum
(Fig. 4). This might be used to detect the velocity of a smooth
javelin in sports or a missile.

If point scatterers are uniformly distributed in a line seg-
ment (Fig. 1(b)) of length , the backscattered signal is an
integration of (21)
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Fig. 4. Simulated under the same conditions as those of Fig. 3, except that a smaller Blackman weighted time window, t1 = 66:7ms, was applied. The three
peaks in the spectra indicate clearly the lower and upper boundaries and frequency shift of the spectra and compare very well with the theoretical prediction.

(26)

where the subscript “L” means “line segment”, ,
is a constant (Fig. 1(a)), and . If is very

small, the integration in (26) needs to be evaluated over ,
with the formula , and the lower and upper
limits of the integration are and ,

respectively. The Doppler spectrum of (26) is given by

(27)

which is the Fourier transform of with respect to
(Figs. 3 and 4). As , the Doppler signal is weakened
and will eventually disappear. This is because the end points of
the line move to infinite distance from the center of the beam.

E. Doppler Spectrum from a Line of Moving Random Scatterers

In a thin blood vessel, the red blood cells can be modeled
as a line of moving random scatterers (Fig. 1(c)). In this case,
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Fig. 5. Simulated under the same conditions as those of Fig. 4, except that the moving smooth line segment was replaced with a line of moving random
scatterers. 2048 scatterers were positioned randomly along the 50 mm line (Fig. 1(c)) with a uniform distribution. The spectra were obtained by averaging
the magnitudes of 40 independent Doppler spectra from lines of moving random scatterers.

(26) must be evaluated with a summation

(28)

where the subscript “R” means “random,” is an index of the
random scatterers, , and . The
Doppler spectrum of the signal from a line of moving random

scatterers is the Fourier transform of (28) with respect to time
, i.e., .

III. SIMULATION

In the following simulation, we assume that a perfect Bessel
beam ((1)) is used, where the scaling factor, , speed of sound,
, and frequency, , are 1202 m 1, 1500 m/s, and 2.5 MHz,

respectively. We also assume that the objects are moving
in the plane . In addition, we ignore the modulation
term, , that shifts the Doppler spectrum by the carrier
frequency, (consider only the frequency components caused
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by motion). To avoid abrupt truncation in time, a Blackman
window [42] of duration, , and peaked at
is multiplied with the received signal before taking the Fourier
transform. The sampling frequency is 2048 Hz and the total
samples for the digital Fourier transform (DFT) [42] is 2048.
This means that the frequency resolution of the spectrum is
1 Hz. The low frequency components of the spectrum that
correspond to the slow motion of objects are suppressed by a
75 Hz wall filter (a half-width Blackman window that is added
to the frequency components that are lower than 75 Hz). It is
noted that the lateral axes of the Doppler spectra in all the
figures in this paper represent the shifted frequency from
and the Doppler angles are referred to in Fig. 1, which
gives a positive frequency shift.

The magnitude of the Doppler spectra ((7) or (20)) of the
signal from a moving receiver located in the plane, ,
with the sampling time, , is shown in Figs. 2(1)
( ) and 2(2) ( ) (assume that at ,
the receiver is at ). For a shorter sampling time,

, which corresponds to a displacement of 20
mm of the receiver when moving at a velocity of 0.3 m/s,
the Doppler spectra are blurred (Figs. 2(3) ( ) and
2(4) ( )). The magnitude of the Doppler spectra of the
signal (see (21)) backscattered from a moving point scatterer
is shown in Figs. 2(5) to 2(8) that correspond to Figs. 2(1) to
2(4), respectively.

The magnitude of the Doppler spectra of the signal (see
(26)) backscattered from a moving smooth line segment
(Fig. 1) is shown in Figs. 3 and 4, which correspond to
the time window, and , respectively. At

, the line segment is centered at (Fig. 1(b)). It is
interesting to note that with the smaller time window (Fig. 4),
the three peaks in the spectra coincide almost exactly with the
theoretical prediction of the frequency shift, lower and upper
boundaries (calculated from (24) and (25)), respectively.
Even with a larger window (Fig. 3), the central peak and the
shoulders of the spectra are predicted very well by the theory.
For the signal backscattered from a line of moving randomly
distributed scatterers (see (28)), the shape of the spectrum may
also be random. Therefore, to obtain a meaningful spectrum,
the magnitude of a number of independent Doppler spectra
must be averaged. Magnitudes of 40 Doppler spectra were
averaged from moving random scatterers and are shown in
Fig. 5, where a smaller time window, , is used.

IV. EXPERIMENT

To verify the theoretical analysis, we designed a Doppler
flow phantom (Fig. 6) [45]. A thin sewing thread [7] (about 0.1
mm in diameter) was mounted on the phantom and was used
as a line of moving random scatterers. A 10–element, 50 mm
diameter, 2.5 MHz central frequency annular array transducer
[24] was used to produce either a Bessel beam (with the scaling
factor of ) or a focused Gaussian beam (the
full width at half maximum (FWHM) of the aperture weighting
is 25 mm and the focal length is 120 mm (with a plexiglass
lens)) [25]. The backscattered signals from the sewing thread
were received with the same transducer, weighted the same

Fig. 6. A Doppler phantom made in our laboratory. A sewing thread of
about 70.5 cm long and 0.1 mm in diameter was moved by a DC motor.
The speed of the motor was controlled by the DC voltage. The position of
the phantom was adjusted so that the part of the thread on the bottom of the
phantom passes through the axis (in the plane y = 0) of the Bessel beam
(� = 1202:45 m

�1) or the focused Gaussian beam (FWHM = 25 mm at
the transducer surface and the focal length F = 120 mm (with a plexiglass
lens)) that was produced by a 10–element, 50 mm diameter, and 2.5 MHz
annular array. The phantom can be rotated around the holding rod to adjust
the Doppler angle. The beams were perpendicular to the figure.

way as it was in transmit. The position of the phantom was
adjusted so that the sewing thread passed through the center
of the beams (the sewing thread was in the plane ).
The sewing thread was driven by a DC motor and its velocity
was controlled by adjusting the DC voltage applied to the
motor. The phantom can be rotated around its axis to adjust
the Doppler angle, (Fig. 1).

A block diagram of the experiment system is shown in Fig.
7. In the experiment, a 2.5 MHz, 20 s tone-burst produced
by a polynomial waveform synthesizer (ANALOGIC DATA
2045) was amplified to drive the transducer. The first and the
last 5 s of the tone-burst were weighted by a rising and falling
Blackman window. The weighting reduces the sidelobes of
the spectrum dramatically while maintaining the narrow band
characteristics of the tone-burst.

To obtain a demodulated backscattered signal, only one da-
tum was acquired by the A/D converter for each transmission
of the tone-burst. The delay time between the transmission and
the datum acquisition was fixed. If the object that backscatters
the incident wave does not move, the acquired datum from
each transmission will be the same (no frequency shift).
However, if the object moves at a constant speed towards
the transducer, the received tone-burst will progressively shift
forward in time for each transmission. This change of received
data contains the information of the motion. As long as the
transmission triggering frequency (pulse repetition frequency
or PRF) is high enough so that no aliasing occurs (PRF =
2048 Hz in the experiment), the velocity and the Doppler
angle can be estimated from the Doppler spectrum ((14)
and (16)).
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Fig. 7. A block diagram of the Doppler experiment. A polynomial waveform
synthesizer (DATA 2045) produced a 2.5 MHz, 20 �s, and Blackman-window
weighted tone-burst that was amplified to drive the annular array transducer
to produce either a Bessel or focused Gaussian beam. Echoes received were
amplified, aperture weighted in the same way as in the transmit, and digitized
by an A/D converter at a fixed delay time that was chosen to sample a
point at the middle of the tone-burst. Only one sample was acquired for
each transmission of the tone-burst. Trigger pulses for beam transmissions
were produced by a function generator (EXACT 7260) at 2048 Hz (the pulse
repetition frequency) that was monitored by the Timer/Counter (HP 5327A).

To match the simulation (Fig. 5), magnitudes of about 40
independent Doppler spectra from the sewing thread were
averaged and the Blackman time window of the duration,

, where , was applied to the signals
before the Fourier transform.

V. RESULTS

The magnitude of the Doppler spectra of the backscattered
signals from a line of moving random scatterers (sewing
thread) is shown in Figs. 8 and 9, for the Bessel and focused
Gaussian beams (see last section), respectively. The spectra
are obtained at two depths (120 mm and 150 mm). The
spectrum obtained with the focused Gaussian beam shows
more variation with depth. The signals were processed in the
same manner described in the last section.

To demonstrate the Doppler spectra of the backscattered
signal from a blood vessel that has a parabolic velocity
distribution, we placed the sewing thread at an axial distance
of , and obtained the backscattered signal
from 11 positions from 5 mm to 5 mm in 1 mm steps.
Here we assume that the blood vessel is very thin in the
direction and is located in the plane, . This assumption
is reasonable because the amplitude of the Bessel function in
(4) or (21) drops quickly as increases. The velocity of

the sewing thread was varied using the following parabolic
formula

(29)

where is the maximum velocity of the red blood cells
(0.3 m/s) and is the radius of the blood vessel (6 mm). From
this equation, it is seen that each velocity corresponds to two

depths (except at ). Therefore, the backscattered sig-
nals from two depths are superposed coherently (rf summation)
to represent the signal at one velocity. The Doppler spectra of
the signals from the above 6 different velocities are shown in
Panels (1) to (6) of Fig. 10. To obtain the spectrum of signals
from the entire vessel, the rf signals for the 6 velocities are
summed (see Panel (7) of Fig. 10).

VI. DISCUSSION

From the simulations and the experiments, we have shown
that the Doppler spectra obtained with Bessel beams have
shoulders that are different from those obtained with con-
ventional focused beams [9]. These shoulders indicate clearly
the bandwidth of the Doppler spectrum and correspond to
the theoretical prediction very well. The central frequency
can be either determined from the peak of the spectrum
(for backscattered signals) or calculated from the shoulders.
Therefore, from the shoulders, the velocity of object and the
Doppler angle can be estimated if the object is moving in a
constant speed during the data acquisition time, . Because the
shoulders are relatively high in amplitude (around 10-dB of
the peak of the Doppler spectrum (for backscattered signals)),
their identification is less sensitive to noise than when using a
conventional focused beam where there is no shoulder at all.
This may increase the accuracy of the estimation of magnitude
and angle of velocity. In addition, because the Bessel beam
has a large depth of field even if it is produced with a finite
aperture (see (2)) [17], [24], [25], its Doppler spectra have less
variation with depth as compared to a focused Gaussian beam
(Figs. 8 and 9).

Although the experimental study on the moving sewing
thread has shown the major features of the Doppler spectrum
predicted by the theory and simulation, it is preliminary. The
Doppler spectrum obtained from the experiment contains a
broadband noise (Figs. 8 to 10) produced from our multi-
channel receiver. The differences between the results of a
moving thread experiment with the Bessel beam (Fig. 8) and
the simulation of a line of moving random scatterers (Fig.
5) are caused by the aperture weighting errors due to high
cross talk among our transmit amplifiers, the truncation of the
Bessel beam to a finite diameter, say, 50 mm, the specular
reflections from trapped air bubbles and regular patterns in
the thread, and the nonuniform thickness of the thread. The
deviation of the shape of the Doppler spectrum (Fig. 9) from
that of Gaussian is also caused by the nonideal Gaussian beam
due to the aperture weighting errors.

The simulation demonstrated that the Doppler spectrum
of signal from a moving receiver has only shoulders and
no central peak (Figs. 2(1) to 2(4)) producing more distinct
shoulders. In a pulse-echo system, such Doppler spectra can be
produced by using a Bessel beam in transmit and an unfocused
planar aperture in receive or vice versa (the role of the
unfocused planar receiver or transmitter is to shift the Doppler
spectrum obtained with the Bessel beam by about ,
where is the central frequency of the transmitting beam).
However, the broad spatial response of the unweighted planar
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Fig. 8. Measured Doppler spectra of the backscattered signals for a moving sewing thread (Fig. 6) that represents a line of moving random scatterers. The
thread passed through the axis (in the plane y = 0) of the Bessel beam that was produced by the transducer described in Fig. 6, and was at two axial distances,
zA = 120 mm (full line) and 150 mm (dotted line), respectively. A 2.5 MHz, 20 �s, and Blackman-weighted tone-burst was used to excite the transducer
and the received signals were also weighted with the Blackman window with the time duration, t1 = 66:7 ms. The velocity of the thread was obtained by
measuring the time of the node of the thread passing through a reference point in space and dividing the length of the thread with the time (10 revolutions were
used to reduce the error). The Doppler angle in each panel was calculated from the spectrum and was roughly from 45 (Panel (1)) to 90 (Panel (10)) degrees at
an increment of 5 degrees. A 75 Hz wall filter was added to the spectra to reduce the large signals from the slow motion of the thread. The vertical bars show
the theoretical predication of the lower and upper boundaries (dotted lines) and the frequency shift (full line) of the spectra (calculated from (24) and (25)).

aperture may reduce the spatial resolution and increase the
sidelobes.

Estimation of the velocity distribution in a blood vessel is
important for flow estimation. The current method is to choose
a very small range cell (short pulse duration) and place the
range cell within different positions of a blood vessel to obtain
a rough estimation of the velocity distribution. It is apparent

that the smaller the range cell is, the broader the bandwidth
of the impinging beams will be and thus the less accurate the
velocity estimation. Therefore, it is desirable that one could
estimate the velocity distribution from the Doppler spectrum
with a larger range cell. The Doppler spectrum obtained with
the Bessel beam has the feature that the spectrum of each
velocity component has shoulders and the bandwidth of the
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Fig. 9. Doppler spectra obtained with the same procedures as those in Fig. 8, except that a focused Gaussian beam (FWHM = 25 mm at the transducer
surface and the focal length F = 120 mm (with a plexiglass lens)) was used. The vertical bars represent the shift of the central frequency.

spectrum depends only on the velocity (Fig. 10). Thus the
spectrum from a group of scatterers traveling at different
speeds will be a summation of nonorthogonal basis functions.
This might be of help in the estimation of velocity distributions
(an inverse problem) and could be studied in the future.

For medical applications, more complicated situations such
as the use of short pulses (broadband probing signals), shorter
sampling time (smaller number of samples in color flow
mapping [6]), and existence of pulsatile flow will have to be
considered. The solution to these problems might be a trade-
off between the accuracy of the velocity estimation and the
above parameters. Time domain velocity estimation might be
a better approach to some of these problems [46].

VII. CONCLUSION

Limited-diffraction beams have a large depth of field. They
could be applied to medical imaging [24]–[26], tissue charac-
terization [27], [28], and nondestructive evaluation (NDE) of
materials [29]. This paper has shown that limited-diffraction
beams, especially, the Bessel beam, can also be applied to
velocity estimation using the Doppler effect. Application of
the Bessel beam to velocity estimation has the advantage
that its Doppler spectrum has little depth dependence and
has distinct shoulders that may increase the accuracy of the
velocity magnitude and angle estimates in noisy environments,
as compared to conventional focused beams. The distinct



660 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 42, NO. 4, JULY 1995

Fig. 10. Measured Doppler spectra of the backscattered signals for a vessel of parabolic flow (the velocity distribution on a cross section of the vessel is a
parabolic function) in the Bessel beam produced by the transducer described in Fig. 6. The vessel was assumed to be very thin and located in the plane, y = 0,
with its center located at the axial distance, zA = 120 mm. The diameter of the vessel was 12 mm, and there were only 6 different velocities that span a
distance of 10 mm with an increment of 1 mm (except at the center of the vessel, each velocity corresponds to two spatial positions in the parabolic flow).
The Doppler angle was 70 degrees. Panels (1) to (6) correspond to 6 velocities in a parabolic velocity distribution, i.e., v = 0.3, 0.291, 0.266, 0.225, 0.173,
and 0.0915 m/s, respectively. For Panels (2) to (6), the backscattered signals from two positions were summed coherently to obtain the Doppler spectra. The
Doppler spectrum of the backscattered signals from the entire vessel is shown in Panel (7) and was obtained by coherently summing the signals of the above
6 panels. The vertical bars show the theoretical prediction of the lower and upper boundaries (dotted lines) of the spectra and the frequency shift (solid lines).

shoulders of the Doppler spectrum produced by the Bessel
beam might help in estimating distributions of velocities in
blood vessels.
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