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Bowtie Limited Diffraction Beams for
Low-Sidelobe and Large Depth of Field Imaging

Jian-yu Lu, Member, IEEE

Abstract—Limited diffraction beams such as Bessel beams and
X waves have a large depth of field and thus could have many
applications. However, these beams have higher sidelobes as
compared to conventional focused beams in their focal planes. In
this paper, a new class of limited diffraction beams is developed.
These beams are termed bowtie limited diffraction beams because
they have bowtie shapes in a plane perpendicular to the beam
axis. To obtain pulse-echo images of low sidelobes and a large
depth of field, a bowtie limited diffraction beam is used in
transmission and its 90° rotated response (around the beam
axis) is used in reception. Unlike the summation-subtraction
method developed previously, this method does not reduce image
frame rate or dynamic range of signals and is not motion
sensitive. The theory of the bowtie limited diffraction beams is
developed. Computer simulation of the theoretical beams under
practical conditions, such as finite aperture, finite bandwidth, and
causal excitation, is performed with the Rayleigh-Sommerfeld
diffraction formula. The simulated beams are very close to those
predicted analytically over a large depth of field.

1. INTRODUCTION

N 1983, Brittingham discovered a localized wave solution

to the free-space scalar wave equation in electromagnetics
that he termed “focus wave modes” [1]. This wave remains
focused over a large distance with only local deformation as it
propagates. The focus wave modes were further developed
by Ziolkowski [2] and many other investigators [3]-[10].
Independent of Brittingham and Ziolkowski’s work, in 1987
Durnin discovered the first limited diffraction beam [11]. Un-
like localized waves, in theory, limited diffraction beams can
propagate to infinite distance without changing their sharply
focused beam shapes. Durnin has termed the new beams
“nondiffracting beams” [11] or “diffraction-free beams” [12].
Because Durnin’s terminologies are controversial in scientific
communities, the new term “limited diffraction beams” has
been used on the basis that all practical beams will diffract
eventually [13], [14]. Durnin’s beams (called also Bessel
beams because their lateral beam profiles are a Bessel func-
tion) have been further studied in both optics [15]-[17] and
acoustics [18]-[20]. Theoretically, limited diffraction beams
can only be produced with an infinite aperture. In practice,
these beams can be closely approximated with a finite aperture
over a large depth of field. Because of this property, limited
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diffraction beams could have applications in medical imaging
[21]-[24], tissue characterization [25], nondestructive evalua-
tion of materials [26], and Doppler velocity estimation [27],
as well as in optics [28] and electromagnetics [7], [29], [30].

Recently, a new type of limited diffraction beams was
discovered [31]-[33]. These beams were called X waves
because they have an X-like shape in a plane along their
propagation axis. X waves are different from Bessel beams be-
cause they are nondispersive in isotropic/homogeneous media.
Like Bessel beams, X waves have a large depth of field and
could have many applications [21], [34]-[39]. The discussion
of advantages and trade-offs of Bessel beams and X waves as
compared to conventional focused beams can be found in a
review paper [13].

Although limited diffraction beams have a large depth of
field, they have higher sidelobes as compared to conventional
focused beams in their focal plane. Localized waves may
achieve lower sidelobes, but they demand an impractical
transducer bandwidth [13], [40]. High sidelobes may lower
contrast in medical imaging [41], [42] and make it difficult
to detect low scattering objects such as small cysts. High
sidelobes also increase the effective sampling volume, which
lowers the image resolution in tissue characterization [25].

High sidelobes are not unique with limited diffraction
beams. They also occur with methods that increase the depth
of field of conventional beams, such as using a ring aperture
[43]-[45] or the Axicon [46]-[48]. Efforts have been made
to reduce sidelobes. For example, Burckhardt er al. [49]
have divided a ring transducer into eight equal segments
and arranged the segments into two orthogonal groups. One
group was used to transmit and the other to receive. Then,
the whole geometry was rotated around the axis of the ring
by, say 45°, to repeat the process, and the resulting RF
signals were summed. This method reduces the sidelobes of
the ring to some extent but the image frame rate is reduced by
a factor of two. Macovski and Norton [50] have weighted
a ring transducer with the powers of the cosine and sine
functions to transmit and receive, respectively. This resulted
in sidelobe reductions in two orthogonal directions of the
ring, but leaves high sidelobes in other directions. Moshfeghi
[51] and Macovski et al. [50] used the idea of transmitting
and receiving with different aperture sizes. However, this
method does not reduce the sidelobes significantly. Recently, a
summation-subtraction method has been developed to reduce
the sidelobes of the pulse-echo responses of limited diffraction
beams [14], [52]. This method is similar to those used by Wild
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[43] and Burckhardt er al. [44] for a ring aperture and that
used by Patterson ef al. [53] for an Axicon transducer. The
problems with the summation-subtraction method are that it
is sensitive to object motion, the final signals have a small
dynamic range due to the subtraction of larger signals, and
the process requires multiple transmissions that lower image
frame rate leading to blurred images of moving objects such
as the heart. Other methods for reducing the sidelobes of
limited diffraction beams, such as deconvolution [54], dynamic
focused reception, etc., have also been suggested and they are
reviewed in [13, pp. 417-422].

In this paper, another new type of limited diffraction beams
is developed. These beams are called bowtie limited diffraction
beams because they have a bowtie shape in a plane perpendic-
ular to their propagation axis. They are obtained from spatial
derivatives of the limited diffraction beams studied previously
(such as the X waves and the Bessel beams) in one transverse
direction (in the bowtie plane). In theory, these beams also
have an infinite depth of field. Even if produced with a finite
aperture, they have the same very large depth of field as
the original limited diffraction beams. The difference between
bowtie limited diffraction beams and the original beams is that
the sidelobes of the former has a strong angle dependency. The
sidelobes are the highest and the same as those of original
limited diffraction beams in the direction of derivatives where
they are proportional to 1/r/2 as r — oo, and where 7 is
the radial distance from the beam axis, and the lowest in
the direction perpendicular to that of the derivatives. Because
of the angle dependency, pulse-echo systems that have both
low sidelobes and large depth of field can be constructed
by transmitting with a bowtie limited diffraction beam and
receiving with its response rotated 90° around the beam axis.
The advantages of this method for sidelobe reduction are
that it does not reduce the dynamic range of the received
signals, nor the image frame rate. The rotation of the bowtie
limited diffraction beams or their responses could be achieved
by electronic switching of radiator elements or using a 90°
interlaced bowtie radiator that has a shape of the Maltese
cross-processor previously reported for speckle reduction [55].

In the following, the theory of the bowtie limited diffrac-
tion beams will be developed. Then, the beams will be
simulated under practical conditions, such as finite aperture,
finite bandwidth, and causal excitation, of a radiator with the
Rayleigh-Sommerfeld diffraction formula. Finally, there is a
brief discussion and a conclusion.

II. THEORY OF BOWTIE LIMITED DIFFRACTION BEAMS

In this section, bowtie limited diffraction beams that are
exact solutions to the isotropic-homogeneous scalar wave
equation will first be derived. Then, a few examples of these
beams will be given and their applications in pulse-echo
systems for low-sidelobe imaging will be demonstrated.

A. Bowtie Limited Diffraction Beams

To derive bowtie limited diffraction beams, it is neces-
sary to review the previously studied X waves [31]-[33]
and Bessel beams [11], [31]. A three-dimensional (3-D)
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isotropic/homogeneous scalar wave equation in cylindrical
coordinates is given by

10 0 1 92 0?2 1 9%
[25(%)*72@72*@7@‘1’—07 M

where 7 = /22 + 42 is radial distance, ¢ = tan~! (y/x) is
azimuthal angle, z is the axial axis that is perpendicular to the
plane defined by r and ¢, ¢ is time, c is the speed of sound or
light, and ® represents acoustic pressure or the Hertz potential
that is a function of r, ¢, z, and ¢. From (1), one obtains X
waves [31]-[33]

(I)Xn (T7 ¢,Z - Clt) =

% [ Blk)Jy (krsin () oo iz cone=Dlgp,

9\8

(n=0,1,2,..) )

and Bessel beams [11], [31]

QJH (T'/ ¢7 z = Clt) = AJn(ar)ei(ﬁz_Wt-i_nQb)v
(n=0,1,2 ..), 3)

where the subscripts “X” and “J” represent X waves and Bessel
beams, respectively, n is a nonnegative integer, c; is phase
velocity (¢; = ¢/ cos( for X waves and ¢; = w/( for Bessel
beams), where w is angular frequency, ( is an Axicon angle
[56] that is a constant for a given X wave, and § = Vk? — o?
is the propagation constant of Bessel beams, where k = w/c
is wavenumber and « is a scaling factor that controls the
lateral resolution (or main beamwidth) of Bessel beams, A
is a complex constant, J,,(-) is the nth-order Bessel function
of the first kind, ap is a constant that determines the decay
speed of the high-frequency components of X waves, and B(k)
is any well-behaved function of k and could represent the
transfer functions of practical radiators (antennas or acoustic
transducers). The X waves (2) and the Bessel beams (3) are
exact solutions to the wave equation (1). They are limited
diffraction beams because they are explicit functions of the
propagation term, z — cit. If 2 — ¢it = const. (traveling
with the waves), ®x and ®; are not functions of z and .
This means that ®x, and ®;_ in (2) and (3) represent waves
that will propagate to infinite distance without changing their
wave shapes.

Taking derivatives of the X waves and the Bessel beams in
(2) and (3), respectively, in one transverse direction, say, ¥,
we obtain the bowtie limited diffraction beams

a’ﬂl

8y—m¢)X” (7"7 ¢,z — Clt) 4)
and

3_7"(1) (r,¢,2 — c1t) (5)

8ym T\, P, 2 c1t),

where m is a nonnegative integer and is the order of the
derivatives. These new beams are exact solutions to the wave
equation (1) (in addition, any linear combinations of deriva-
tives of waves in rectangular coordinates are also solutions to
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(1)) and they are still limited diffraction beams because the
propagation term, z — cit, is retained after the derivatives.

From (2) and (3), we see that the Bessel beams are a
special case of the X waves (or monochromatic X waves).
If B(k) = 6(k — ko), where kg = wg/c and wy is a constant
angular frequency, (2) is given by

Ox (r, ¢,z — crt) = ei"¢Jn(k0T sin C)e_ko[ao_i(z COSC_Ct)],
(n=0,1,2,..). 6)

Leta = kpsin(, = \/kZ — a2 = kgcos(, and A = ko0,
(6) is identical to (3). For this reason, in the following, we
consider primarily the bowtie X waves. The properties of the
bowtie Bessel beams are expected to be similar to those of the
bowtie X waves (Appendix B).

B. Examples

Two examples will be given below showing the properties
of the bowtie limited diffraction beams.
The integration in (2) can be evaluated if B(k) = ag [31]

ap(rsin ()" em?

VM (7 + V)"

where the subscript “BB” means broadband, ®xpp, repre-
sents an nth-order broadband X wave,

(n=0,1,2,.),

®xpg, =

M = (rsin¢)? + 72, (3)
and where
T = lag — i(zcos( — ct)]. )

Because for n > 0 the field patterns of ®xpp, are
complicated, in the following, only the cases where n = 0
will be considered. With n = 0, (7) is simplified and becomes
rotary symmetric (independent of ¢), and represents the zeroth-
order X wave [31]

ag
\/(7‘ sin C)Z + [ap — i(zcosC — ct)]2

Substitute (10) into (4) and let m = 4 and m = 10 (these
two orders of derivatives are chosen to demonstrate the trend
of the bowtie beams of increasing orders), we obtain

®xpB, = (10)

35y*sin* ¢ — 30y> M sin® ¢ + 3M?
M9/2
(1)

-4
Ox,, =axy, 3apsin® (
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and (12), shown at the bottom of the page, respectively, where
&, represents the mth-derivative bowtie X wave, and
ax,, = ag/(9sin*() and ax,,, = —ad’/(893025sin'" ()
are constants that normalize the peak of the bowtie X
waves to one. In obtaining these constants, we assume
that there is only one peak for both (11) and (12), and

the peaks appear at x+ = 0, y = 0, and z = «cit,
ie., mh_r)rb il_r% zl_l)réllt{(I)XBm}}} = r\?w%i({(I)XB’"} = 1

Equations (11) and (12) can be verified by directly inserting
them into (1).

The 4th and 10th derivative bowtie X waves ((11) and (12))
are shown in Fig. 1. For comparison, the zeroth-order X wave
(10) is also shown. The transfer function, B(w/c), in (2) is
applied to both the bowtie and the zeroth-order X waves, and
is assumed to be a Blackman window function [57]

“wo
0

otherwise,

B(w)_{ 0.42 — 0.5 cos % + 0.08 cos QWW, 0<w < 2wy
c

(13)
where wy = 27 fo, and fo = 2.5 MHz is the central frequency
(the —6-dB relative bandwidth of (13) is about 81%, or, the
bandwidth is equal to 0.81 x fy). The parameter, ag, for the
bowtie X waves and the zeroth-order X wave is chosen so that
the bandwidths of the waves are determined mainly by (13).
From Fig. 1, it is seen that the bowtie waves are strongly
angle dependent and their ties become thinner as the order of
derivative increases.

C. Asymptotic Behaviors of Bowtie Limited Diffraction Beams

To understand the energy distribution of the bowtie limited
diffraction beams in space, we need to know the asymptotic
behaviors of the bowtie X waves given in (11) and (12)
(Appendix A)

by sin? ¢

r:oo 7"1/2 (14)

1Y\ d
1D, | +O(m> sin” ¢+ e

and

by sin? 1 . dy
|(I)X310|r:oo Tzﬁﬁ O(m> Sln2¢+ S0F1)/2°
(15)
where “~” means “similar to,” “O(-)” represents the terms
that approach zero faster than the function inside the bracket
as 7 — oo, and by and d; are a set of constants that may have
different values for (14) and (15).
It is seen from (14) and (15) that the asymptotic behaviors

of the bowtie X waves are angle dependent. This is different

By =X g0 - 1417500 sin'? ¢

46189y1° sin' ¢ — 109395y M sin® ¢ + 90090y® M2 sin® ¢

x|

M?21/2

—30030y*M? sin* ¢ + 3465y2M* sin® ¢ — 63M°
+ M?21/2

2 (12)
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Bowtie X Waves (Projection of Peaks on X—Y Plane)
(with One—Way Blackman Window Transfer Funcion Peaked at 2.5 MHz)

f——— 50 mm— f—— 50 mm—— k—— 50 mm——

RINEL,

Bawtie (4th Derwatlve)
(ap = 0.10

Fig. 1.

Eowhe (10th Denvutlve)
(a0 = 0.15 mm)

Zerath Order X Wave
= 0.03 mm)
06/95/JYL

The 4th (left panel) and 10th derivative (central panel) bowtie X waves, and their comparison with the zeroth-order X wave (right panel). The waves

are obtained theoretically from the wave equation and filtered with a Blackman window function peaked at 2.5 MHz. The images in the panels are shown
in a plane perpendicular to the wave axis and are obtained from the peaks of the absolute values of the real-part of the waves projected along the axis to
the image plane. Therefore, these images give the highest sidelobes of the waves. The parameters used in this figure are as follows: the Axicon angle, ¢,
of both the bowtie X waves and the zeroth-order X wave is 6.6°; the constant, ag, that determines the fall-off speed of the high-frequency components
(see (2)) of the zeroth-order X wave, the 4th and 10th derivative bowtie X waves, is 0.03 mm, 0.10 mm, and 0.15 mm, respectively; the gray-scale of the
images is linear, that is ranged from O to 1.0 in 256 levels; and the images are in the x — y plane.

from that of the zeroth-order X wave (10) whose asymptotic
behavior is given by

By pp,| = ‘ao/\/M‘ ~ 1/r1/? (16)

(see (A2) in Appendix A). If ¢ = 0 (perpendicular to the
direction of derivatives), the fields in (14) and (15) are given by
|®| o 1/r(m+1/2 where m = 4,10 or other nonnegative
even integers, and “oc” means “proportional to.” If ¢ = 90° (in
the direction of derivatives), one always gets |®| oc 1/r!/?

which is the same as the X waves and the Bessel beams [31].
For 0° < ¢ < 90°, the first terms in (14) and (15) will be the
dominating terms eventually as r — oo. However, because
of the angular weighting, sin™ ¢, this happens only for very
large r if ¢ is small or m is large.

D. Sidelobe Reduction for Pulse-Echo Systems

Although rotary-symmetric limited diffraction beams, such
as the zeroth-order X wave (10) and Bessel beam (3), have
a large depth of field [21], [23], they have high sidelobes
when applied to pulse-echo systems. To obtain pulse-echo
systems that have both low sidelobes and large depth of field,
bowtie limited diffraction beams can be used. This is because
the sidelobes of bowtie limited diffraction beams are strongly
angle dependent. To obtain low sidelobes, a bowtie limited
diffraction beam is used in transmission and its 90° rotated
response is in reception. The resulting pulse-echo responses
of the systems are the time convolution of the transmission
beam and the reception response. The pulse-echo responses
of the 4th and 10th derivative bowtie X waves ((11) and
(12)) and their comparison to that of the zeroth-order X wave

(10) are shown in Fig. 2. Log compression is used to show
the small sidelobes of the bowtie pulse-echo responses. The
Blackman window function (13) is added to both transmission
and reception which gives a 58% —6-dB relative bandwidth.
It is seen that the sidelobes of the pulse-echo responses of
bowtie beams are much lower than those of the zeroth-order
X wave.

The method for reduction of sidelobes of pulse-echo systems
with bowtie limited diffraction beams has several advantages
as compared to the summation-subtraction method studied
previously [14]. It does not subtract two large signals resulting
in small differences that may have small dynamic ranges in the
presence of noise. It is not sensitive to object motion because
no subtraction of RF signals is involved. In addition, image
frame rate is not reduced (low image frame rate may lead to
blurred images of moving objects such as the heart) since no
multiple transmissions are used.

To get a more quantitative view of the sidelobes of the
bowtie limited diffraction pulse-echo systems, line plots of the
images in Fig. 2 are given in Fig. 3. It is seen that the sidelobes
of the pulse-echo responses of the bowtie X waves decrease as
the order of derivative increases. The highest sidelobes of these
responses appear at ¢ = 45° and the best lateral resolution (or
the smallest first sidelobe) is around ¢ = 30°. For comparison
with the conventional focused beams at their focuses, plots
of sidelobes of the pulse-echo response of a circular focused
piston transducer at its focus is also shown. The beam pattern
of the piston transducer at the focus is called the Airy pattern
and is determined by a Jinc function [58, p. 64]

2J1(ayr )

ayT

Jinc(a;r) = 17
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Bowtie X Wave Pulse—Echo Responses (Log Compressed)
(with Two—Way Blackman Window Transfer Funcion Peaked at 2.5 MHz)

f——50 mm— — 50 mm—— k—— 50 mm——

X =

anile (4th Der\vntwe)
= 0.10

Fig. 2.

Bawhe (10th Derlvutive)
{apg = 0.15 mm

0 dB

Zeroth—Order X Wave
{ag = 0.03 mm)
06,/95/JYL

This figure has the same format as that of Fig. 1 except that it shows the highest sidelobes of the pulse-echo (two-way) responses of the bowtie

X waves and the zeroth-order X wave. A Blackman window function peaked at 2.5 MHz is added to both transmission and reception (two-way Blackman
window). For the bowtie X waves, the reception responses are rotated 90° from the transmission waves around the propagation axis. Images in all panels are
obtained from the peaks of the absolute values of the pulse-echo responses projected along the axis to the image plane. The images are log-compressed and
displayed in the range from 0 dB to —70 dB with 256 gray levels. The parameters of the waves are the same as those in Fig. 1.

where r is the radial distance and «; is a scaling factor that
controls the mainlobe width of the function and is related to the
f-number and the central wavelength of the beam. In Fig. 3,
aj = 1772.06 m ! so that the —6-dB beamwidth of the pulse-
echo Jinc response is about the same as that of the zeroth-order
X wave. It should be noted that although the sidelobes of the
pulse—echo response of the 10th derivative bowtie X wave at
¢ = 45° are about 15 dB higher than those of the Airy pattern
near the radial distance » = £25 mm (see Fig. 3), they are
about 15 dB lower than those of a linear array at its focus
whose beam pattern is a Sinc function [58, p. 62]

sin (ar)

Sinc(asr) = (18)

T
where a, = 151640 m™! is a scaling factor (with as =
1516.40 m™—!, the —6-dB beamwidth of the pulse-echo re-
sponse of the Sinc function is the same as that of the Jinc
function).

III. REALIZATION OF BOWTIE LIMITED DIFFRACTION
BEAMS WITH FINITE APERTURE RADIATORS

The theoretical bowtie limited diffraction beams derived in
the last section are exact solutions to the wave equation with-
out boundary conditions. Therefore, they can only be produced
with an infinite aperture. Because the asymptotic behaviors of
the bowtie limited diffraction beams along the direction of
derivatives are proportional to 1/ r1/2, an infinite total energy
is required. In addition, these beams are not causal, i.e., they
must exist from ¢ = —oo. In this section, the bowtie limited
diffraction beams will be produced approximately for practical
conditions, such as, finite aperture, finite bandwidth, and causal
excitation, using the Rayleigh-Sommerfeld diffraction formula
[58].

A. Rayleigh-Sommerfeld Diffraction Formula

The Rayleigh-Sommerfeld diffraction formula is an integra-
tion that sums the spatially weighted contributions of the fields
from baffled point sources on a radiator surface. It is given by
(58]

1 2 D(2 ’LkTOI
éR(’I?, k) :J/d(z)l / T/dTl(is( QZS k) ’I“
) ) 01
2 b2 ikr
+i/d¢>’ P ds(r ¢ k) ez
2 . ) ’I“S’l
0 0

19)

where the first and the second terms represent the high-
and low-frequency contributions, respectively, 7' — ¢’ are
the polar coordinates on the surface of the radiator, where
V2 + 92 and ¢ = tan~1y//2’, z is the distance on the
axial axis that is perpendicular to the ' —¢’ plane, r'dr’'d¢’ is a
differential area on the surface, )\ is the wavelength, r; is the
distance between the differential area and the spatial point, ¥ =
(r, ¢, z), where the field is to be calculated, D is the diameter
of the radiator (assume a circular radiator), ®s(r’, ¢', k) is an
aperture weighting function (the Fourier transform (spectrum)
of the beams with respect to time, ¢, evaluated at the surface
of the radiator, z = 0), where the subscript “S” represents
“surface of radiator,” and ® r(7, k) is the Fourier transform of
the beams to be calculated at the spatial point, 7, where the
subscript “R” means “calculated by the Rayleigh-Sommerfeld
diffraction formula.” From ® (7, k), we obtain the beams

=

Bp(7t) = F L [tf)R(F, %)} (20)
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o4 X WAVES - - - Zeroth-Order X o4 Angle = 30 Deg.
____Bowtie (10th Der.) [H §. dJinc

_| - Bowtie (4th Der.) Angle = 0 Deg.

© Angle = 15 Deg. o+ Angle = 45 Deg.

Normalized Magnitude (dB)

i

Lateral Distance (mm)

Fig. 3. Line plots of the theoretical pulse-echo responses (see Fig. 2) of the 4th (dotted lines) and 10th derivative (full lines) bowtie X waves and the
zeroth-order X wave (dashed lines) at four angles: ¢ = 0° (Panel (1)), 15° (Panel (2)), 30° (Panel (3)), and 45° (Panel (4)) cross the axis of the
beams. For comparison, the pulse-echo Jinc function or Airy pattern of a focused circular piston beam at its focus is also shown (long dashed lines).
The angles ¢ = 0° and 90° correspond to the » and y axes, respectively (the horizontal and vertical axes of Fig. 2). The lateral axis of the plots is
from —25 mm to 25 mm and the vertical is from 0 dB to —140 dB.

where F~! represents “the inverse Fourier transform” [59] = = 0 in (2) and substitute the result into (4), we have

that is defined as om
1 e WQXO(T,(/ﬁ,z —cat) =
fit) = = / Fw)e ! dw, 1) 0 . |
2r ) / B(k) [;—Jo(krsin g)} e~ klao—i(zcosC=et)] g~ (22)
ym
0

The Rayleigh-Sommerfeld diffraction formula (19) has
taken into account the practical conditions of a radiator, such

s : . X Compare (22) with (21), we obtain the spectrum of the bowtie
as the finite aperture, D, and finite bandwidth (assuming that

X waves
®s(r', ¢, k) is a band-pass function of k). The causality of m
. . ~ LW 2 w 0 w .
the beams can be assured by truncating the beams with a Ox,.. (7“7 —) :—B(—) —Jo(—T‘ sin C)
. . . N o c c c/ | Oy™ c
rectangular time window, i.e., |® (7, 1) |t7i |>t = 0, where
. oy | =0 . H(£>e—%(a0—iz cos () (23)
to 1S a preset constant. c
B. Bowtie X Waves where
To use (19), we need to obtain the spectrum of the bowtie H(E ) _ { I, w20 (24)
limited diffraction beams at the surface of the radiator. Let c 0 , w<oO
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© 1 BOWTIE X WAVE (4TH) Z =100 mm o4 Z=216mm
o — Simulation (This Column) 8 (This Column)
a1 Theory (1) " ©
Angle = 0 Deg. 4 Angle = 0 Deg.
81 AT R 8 TS
(=3 o
21 21
' B=0.58x {0 '
T DOF =216 mm 1
g : . , . . gl . . . :
' -20 -10 0 10 20 ' -20 -10 0 10 20
© @ © 1 ©)
8 Angle = 15 Deg. o Angle = 15 Deg.
Y a1
& . 1 ‘
- 8. 8
S~ T -
8 4 4
o
2 % . . . . . g . . . . .
c -20 -10 0 10 20 ' -20 -10 0 10 20
(o]
]
=
B °7 ®) °1 U]
N g Angle = 30 Deg. Q] Angle = 30 Deg.
R \
€ 1 ™ TN T Tl T
6 @ = s g T ]
Z ° g
8 8]
gl ; . . : gl . . . .
' -20 -10 0 10 20 ! -20 -10 0 10 20
o @ ° 1 ®
8. | Angle = 45 Deg. 8 1 Angle = 45 Deg.
8- 8-
8. 8
A il
gl . : . : gl . . . .

10 20

Lateral Distance (mm)

Fig. 4. Line plots of the pulse-echo (two-way) responses of the 4th derivative bowtie X wave (full lines) simulated with the Rayleigh-Sommerfeld diffraction
formula at four different angles, ¢ = 0° (first row), 15° (second row), 30° (third row), and 45° (bottom row), cross the axis of the beam, and at two axial

distances, z

= 100 mm (left column) and 216 mm (right column). For comparison, the plots of the theoretical pulse-echo responses of the 4th derivative

bowtie X wave are copied from Fig. 3 (dotted lines). The parameters of the simulated beam are the same as those of the theoretical beam in Figs. 2 and 3
except that the diameter of the radiator is 50 mm instead of infinity. With this diameter, the depth of field of the beam is about 216 mm.

is the Heaviside step function [59]. At the surface of a radiator,
z = 0, we obtain from (23)

:2%3(%) [azyfnm

. H(E)67%a0
c

where v’ = r’sin¢’. The derivatives of the Bessel function
in (25) are tedious. Examples of the derivatives with m = 4
and 10, and their relationship to the bowtie Bessel beams are
given in Appendix B.

box(0.)

J(%r’ sin C)]

(25)

Replacing &35(7”/,(]5/,]{7) in (19) with (25) and using (20),
we obtain approximated (simulated) 4th (Fig. 4) and 10th
derivative (Fig. 5) bowtie X waves. The parameters used in
the simulation are the same as those used in the theoretical
beams (Figs. 1-3). Because

|<I>R(F,t)||f_i , << max |® g (7, t)], (26)
T V7t

&

where &g 8.33 us, the simulated bowtie X waves are
truncated with a moving rectangular window to produce causal
waves. The diameter of the radiator for the simulated beams
is 50 mm.
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Fig. 5.

This figure has the same format as that of Fig. 4 except that it is for the 10th derivative bowtie X wave. The parameters used in this figure are

the same as those used in Figs. 2 and 3 of the theoretical beams and those in Fig. 4. The noise in the panels of the upper two rows is caused by the
computation errors that exceed the extremely low sidelobes to be calculated.

Because any derivatives of the X waves in terms of the
coordinate variables, x, y, z, or ¢, do not change the Axicon
angle, (, the depth of field of the bowtie X waves is the same
as that of the zeroth-order X wave when produced with the
same aperture, D, and is also given by [31]

XZmaw = g cot (. 27

With the parameters used, the depth of field of the simulated
bowtie X waves in Figs. 4 and 5 is about 216 mm. From
Figs. 4 and 5, we see that the pulse-echo responses of the

simulated bowtie X waves are very close to those of the
theoretical waves except that near the boundary of the depth of
field, z = 216 mm, sidelobes are increased. The noise shown in
the first two rows (¢ = 0° and 15°) of Fig. 5 for the simulated
10th derivative bowtie X wave is caused by the computation
errors that exceed the extremely low sidelobes of the wave to
be calculated.

The simulated bowtie X waves in the r — z planes are shown
in Fig. 6. These waves are calculated with (19) and (20) and
with the same parameters as those used in Fig. 1. They are
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Bowtie X Waves at Two Planes (0 = 50 mm)
{with One—Way Blackman Window Peaked at 2.5 MHz)

|‘_“ 12.5 mm

|‘—50mm_'| — 50 mm—

Bowtie (4th Derivative) Bowtie

Simulation

11

— —— 125 mm —— ——12.5 mm —

Angle = O Deg.

ESECEN

{10th Derivative)
{gg = 0.10 mm) (an=01o mm)

Zeroth—Qrder X Wave
{gp = 0.03 mm)

06/95/JYL

Fig. 6. One-way (transmission or reception only) 4th (panels in the left column) and 10th derivative (panels in the middle column) bowtie X waves shown
in planes (r — z planes) along the wave axis and calculated with the Rayleigh-Sommerfeld diffraction formula at the axial distance, z = 100 mm, and at
two angles: @ = 0° (panels in the upper row) and 90° (panels in the bottom row). The zeroth-order X wave (panels in the right column) is added for
comparison. One-way Blackman window (13) is applied to all the images. The parameters used in this figure are the same as those in Fig. 1, except that
the diameter of the radiator is 50 mm in the simulation. The gray-scale of the images in the panels is proportional to the analytic envelope of the real
part of the waves. It is linear and normalized to the range from 0.0 to 1.0 in 256 levels.

Bowtie X Waves at Two Planes
(with One—Way Blackman Window Peaked at 2.5 MHz)

f——125 mm —— F—— 125 mm —— F—— 125 mm —

[
I
[
I

Bowtie (4th Derivative)
(ap = 0.10 mm)

Theory

Fig. 7. This figure has the same format as Fig. 6, except that it is obtained analytically (see (10)—(12)).

same as those used in Fig. 1.

one-way fields (transmission fields or reception responses) and
are produced with a radiator of 50-mm diameter. It is clear
that the bowtie X waves have the same Axicon angle as the
zeroth-order X wave.

Fig. 7 has the same format as Fig. 6 except that it is obtained
from the theoretical bowtie X waves ((11) and (12)) and the
zeroth-order X wave (10) filtered with the Blackman window
function (13) and produced with an infinite aperture (Fig. 1).
Comparing Figs. 6 and 7, one can see that they are very

&4 40

Bawtie {(10th Derivative)
{ag = 0.15 mm)

Angle = 0 Deg.

Angle = 90 Deg.

Zeroth—Qrder X Wave
{ag = 0.03 mm)

06/95/JYL

The parameters used in this figure are the

close. This means that the theoretical bowtie limited diffraction
beams can be produced with a practical radiator of a finite
aperture over a large depth of field.

C. Axial Field Responses

Line plots of the peak-to-peak values of the simulated one-
way bowtie X waves versus the propagation distance, z = c;t,
are shown in Fig. 8. The bowtie limited diffraction beams are
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s
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Fig. 8. Line plots of the peak-to-peak values of the real part of the one-way

4th (dotted line) and 10th derivative (full line) bowtie X waves and ze-
roth-order X wave (dashed line) versus the propagation distance, z, from
6 to 400 mm. The parameters of these beams are the same as those in Fig. 6.
The line plot of the theoretical beams (long dashed line) is simply a straight
horizontal line because they have an infinite depth of field. The vertical bar
(very long dashed line) in the figure represents the depth of field (216 mm)
of the simulated beams. The lateral axis is the propagation distance and the
vertical axis represents the normalized magnitude from —40 dB to 10 dB.

produced with the same aperture and the Axicon angle and
have the same depth of field as the zeroth-order X wave.

IV. DISCUSSION

Bowtie limited diffraction beams (Fig. 1) and their applica-
tion in pulse-echo systems for low-sidelobes and large depth of
field imaging (Figs. 2 and 3) have been studied. Theoretically,
these beams have an infinite depth of field. With practical
radiators of finite aperture and bandwidth, these beams can
be produced closely (Figs. 4-7) over a large depth of field
(Fig. 8). In the following, the advantages and limitations of
these new beams will be discussed.

A. Sidelobes

The bowtie limited diffraction beams studied in this paper
have the advantages that they have very low sidelobes in
the direction perpendicular to that of derivatives, and the
sidelobes are even lower as the order of derivative increases
(Fig. 1). Their asymptotic behaviors ((14) and (15)) in this
direction are proportional to 1/r(™m*1/2 as r — oo, where
m is the order of derivative and r is the radial distance. In
the direction of derivatives, the asymptotic behaviors are the
same as those of the original limited diffraction beams, i.e.,
are proportional to 1/71/2. The asymptotic behaviors in other
directions are between these two extreme cases. With these
properties, bowtie limited diffraction beams can be applied to
achieve both low-sidelobe and large depth of field in pulse-
echo systems (transmit with a bowtie limited diffraction beam
and receive with its 90° rotated response, see Figs. 2 and 3).
For example, the sidelobes of the pulse-echo response of a 4th
derivative bowtie limited diffraction beam are close to those of
a linear or rectangular radiator in the focal plane (sinc function
(18)), and the sidelobes of the pulse-echo response of a 10th
derivative beam are comparable to those of a circular piston
radiator in the focal plane (Jinc function (17)). In both cases,
the sidelobes are much lower than those of the original limited
diffraction beams (Figs. 2 and 3).
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Sidelobes of the pulse-echo responses of the bowtie limited
diffraction beams are angle dependent (Figs. 2 and 3). They
are the lowest at ¢ = 0° and the highest at ¢ = 45°.

B. Resolutions

Lateral resolution is usually measured with the —6-dB
width of beams. With the same depth of field and aperture
size, the lateral resolution of the pulse-echo responses of
the bowtie limited diffraction beams increases as the central
wavelength of the beams decreases. For a given central
wavelength, the lateral resolution of the pulse-echo responses
of the bowtie limited diffraction beams is comparable to
those of the original limited diffraction beams (see Figs. 2
and 3) and increases with the order of derivative. However,
the increase of resolution is at the expense of increased
first sidelobes. Higher first sidelobes will increase the
effective main beamwidth and thus reduce the effective
lateral resolution. However, at some angles such as ¢ =
30° (Figs. 3-5), the first sidelobes are reduced. Therefore,
we can rotate the pulse-echo responses of the bowtie limited
diffraction beams so that the object to be imaged is scanned at
these angles. The larger first sidelobes that are not in the scan
direction can be treated as an increased slice thickness or a
decreased out-of-plane resolution that does not have as strong
an influence on image quality as the in-plane resolution.

C. Depth of Field

Given the same aperture size and the Axicon angle (for
X waves) or scaling factor (for Bessel beams), the depth of
field of bowtie limited diffraction beams of various orders
is about the same as that of the original limited diffraction
beams (Fig. 8) and can be calculated with the formulas of
the original limited diffraction beams ((27) for X waves). For
the theoretical bowtie limited diffraction beams, their depth of
field is infinite because they are assumed to be produced with
an infinite aperture (see the lateral straight line in Fig. 8).

The depth of field is a critical parameter for all limited
diffraction beams. Within the depth of field, the simulated
beams under the practical conditions are very close to the
analytic beams (Figs. 4-7). At the depth of field (216 mm
in our examples), the sidelobes of the simulated beams begin
to increase (Figs. 4 and 5). Beyond the depth of field, these
beams may diffract significantly.

D. Other New Limited Diffraction Beams

Bowtie limited diffraction beams studied in this paper are
only one type of new limited diffraction beams. Numerous
limited diffraction beams that might have practical applications
are to be discovered. For example, taking derivatives of
the zeroth-order limited diffraction beams in both z and y
directions may result in a limited diffraction beam of a cross
shape that could also be used for sidelobe reduction in pulse-
echo systems (transmit with a cross beam and receive with its
45° rotated response). Taking derivatives of the higher-order
limited diffraction beams (n > 0 in (4) and (5)) may result
in other new beams.
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E. Production of Bowtie Limited Diffraction
Beams in Pulse-Echo Systems

One way to produce the pulse-echo responses of the bowtie
limited diffraction beams is to use a 2-D array in both
transmission and reception. To transmit the bowtie limited
diffraction beams, the signals to drive the elements of the array
can be weighted with the theoretical beams ((11) and (12))
evaluated at the surface of the radiator, z = 0. In reception,
according to the principle of reciprocity, the signals from the
elements can be weighted the same as in transmission to obtain
a bowtie limited diffraction response. This method requires a
large number of T/R switches because the number of elements
of a 2-D array is usually very large in order to satisfy the
Nyquist sampling rate of the aperture weighting functions. If
the beams are steered with linear phase delays, the number of
elements and thus the number of the T/R switches required
may be even larger because the interelement distance in the
direction of steering must be smaller than A\/2 [36], [37] to
reduce the grating lobes, where A is the wavelength.

The other way to produce the pulse-echo responses of the
bowtie limited diffraction beams is also to use a 2-D array,
but the array is divided into four quarters where the bowtie
beam transmission uses two opposite quarters and the bowtie
reception takes the other two. This method ignores the small
weightings of the elements in the areas complementary to
either the transmission or reception bowtie shape and thus is an
approximation to the previous one. Its advantage is that no T/R
switches are needed because of the separated transmission and
reception. This also helps to remove the noise produced by the
T/R switches. However, if a better approximation is desired, a
small number of T/R switches are still needed for the elements
around the center of the beams where the weighting functions
have larger values.

For both methods, the electronic switches that rescale the
weighting functions in the scan direction for compensating the
loss of the effective aperture as the beam is steered off the axis
by a linear phase delay are still required [36], [37]. However,
in a steering range of £45°, only a few switches are necessary
to produce reasonably good beams [36]. If a mechanical scan
is used, these switches can be removed because the effective
aperture stays the same in the scan. The mechanical scan
may also take the advantage of the symmetry of the beams
and the low spatial frequency in some areas, such as those
in larger radial distances, to reduce the number of elements.
Fewer elements will not increase the grating lobes if the gaps
between the elements are small [36].

In addition, because bowtie limited diffraction beams of
higher-order derivatives have narrower (skinny) tie shapes,
they could be produced with an 1.5-D array.

F. Possible Applications

Because the pulse-echo responses of the bowtie limited
diffraction beams have low sidelobes and a large depth of
field, they could have applications in medical imaging, tissue
characterization, Doppler, underwater acoustics, nondestruc-
tive evaluation of materials (NDE), electromagnetics, radar,
and optics.
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G. Some Considerations

Bowtie limited diffraction beams are exact solutions of the
wave equation (1) derived from the assumption that the media
in which beams propagate are isotropic and homogeneous.
Therefore, applications of these beams under conditions that
are close to the assumption are expected to have the best
results. If the conditions are far away from the assumption,
the results may be compromised.

V. CONCLUSION

A new type of limited diffraction beams is developed. These
beams are called bowtie limited diffraction beams because
they have bowtie shapes in a plane perpendicular to the
propagation axis of the beams. When these beams are applied
to pulse-echo systems, their pulse-echo responses have very
low sidelobes over a large depth of field, even if the beams
are produced with a practical radiator that has a finite aperture
and bandwidth. These new beams could have applications in
medical imaging, tissue characterization, Doppler, underwater
acoustics, nondestructive evaluation of materials (NDE), as
well as other physics related areas such as electromagnetics
and optics.

APPENDIX A

Asymptotic behaviors of the bowtie X waves in (11) and
(12) as r — oo.

From the relationship between the polar and rectangular
coordinates, we have

Yy = rsin ¢, (A1)

where ¢ is the angle in a plane perpendicular to the z-
axis. For X waves, the slowest decay of the field occurs
at the X branches [31, (21)]. For example, when r =

ﬁ\/(z cos ¢ — ct)? — a2 in (10), where |z cos ¢ — ct| > ag

|q>XBB0|:‘a0/VM‘ ~ 1/7‘1/2,

— 00

(A2)

]

where “~” means “similar to.”
With (A1) and (A2), the asymptotic behaviors of the bowtie
X waves in (11) and (12) can be obtained
.4 .2
sin® ¢ sin” ¢ 1
172 27372 +dy 52

|(DXB4| T:OO by +b

bl Sin4 gﬁ

1 .2 dl
17z +O(m)sm ¢+7r(4+1)/2, (A3)

and
o bisin'®¢  bysin® ¢
| XB10| T:OO T1/2 7"3/2
bysin®¢p  bssin?¢ s
r7/2 79/2 rii/2
by sin10¢ 1 . 9 dq
=Tz +0 72 )5 ¢+ A(10+1)/2°
where “O(-)” represents the terms that approach zero
faster than the function inside the bracket as r — oo,

b; and d;, (i=1,2,---), are a set of constants that may
have different values for (A3) and (A4).

bs sin® ¢
75/2

(A4)
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APPENDIX B results that are similar to those of the bowtie X waves in

The derivatives in (25),

am

—8ym Jo (%r sin C) ,
for m = 4 and 10, respectively, and their relationship with the
bowtie Bessel beams (see (3) and (5)).

For a given frequency or a constant w, if @ = % sin ¢, (B1)
becomes

(B1)

&g—mjo(Oﬂ‘) .

From (3) and (5), one sees that (B2) is an mth-derivative

bowtie Bessel beam with n = 0, evaluated at z = c¢;t, where
¢y = w/ is the phase velocity.
For m = 4 and 10, we obtain

(B2)

84
a—yZlJ[](CYT) =
2402yt o?y?(24 + o®y? 3a2
l_ o D)3
48ay*  Say?(6 + a’y? 6a (1 + a2y?
+l ot SOt a) | Sl )
r r T
(B3)

and (B4), respectively, shown at the top of the page.

Similar to the bowtie X waves in (11) and (12), the constants
that normalize the peaks of the bowtie Bessel beams in (B3)
and (B4) to one can be obtained and are given by ay,, =
8/(3a*) and aj,,, = —256/(63'?), respectively.

To show the properties of the bowtie Bessel beams, we need
to know the asymptotic behaviors of (B3) and (B4). With the
formula |J,(ar)] ~ 1/r'/2 [60, p. 622], we obtain the

Appendix A

4 J bysin* ¢ sin® ¢(bo + by sin® ¢)
oyt ()|~ —7 1372
sin” ¢ (ba + bssin® ¢)  sin® ¢(bg + by sin® @)
+ 75/2 + r7/2
dy dy  bysin* ¢ 1Y .,
+ m W = 7"17 + 0 m sin” ¢
dy 1
et O<r(4+1>/2> (BS)
and
o010 by sin'®¢ sin® (/)(b2+b3 sin? gb)
—J(ar)| ~
dylo r—oo  pl/2 r3/2
. sin® ¢(b4+b5 sin” ¢+ bg sin* qS)
' r5/2
_sin® ¢ (br+bgsin® p+bg sin® +byg sin® §)
! r7/2
_sin® ¢(bi1+biasin® $+bigsin® p+brasin® g+bizsin® )
' 79/2
sin® ¢(big+bi7sin” p+bigsin® ¢+big sin® p+bag sin® ¢)
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' ,13/2
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dq dy ds3 dy ds
T)2 + ri3/2 + r15/2 + ri7/2 + r19/2
by sin'® ¢ 1 .9 dy 1
SYE; 0 sz )5 ¢+ F(1041)/2 +0 F10+1)/2 )
(B6)
ACKNOWLEDGMENT

The author thanks Dr. Greenleaf in the Biodynamics Re-
search Unit, Mayo Clinic for reviewing the manuscript. The
author also thanks E. C. Quarve for secretarial assistance.

(1]

(21

(3]

(4]

(5]

(6]

(71
(8]

(9]

(10]

(11]
(12]

[13]

[14]

[15]

(16]
(17]

[18]

(19]

[20]

[21]

[22]

REFERENCES

J. N. Brittingham, “Focus wave modes in homogeneous Maxwell’s
equations: transverse electric mode,” J. Appl. Phys., vol. 54, no. 3, pp.
1179-1189, 1983.

R. W. Ziolkowski, “Exact solutions of the wave equation with complex
source locations,” J. Math. Phys., vol. 26, no. 4, pp. 861-863, Apr.
1985.

R. W. Ziolkowski, D. K. Lewis, and B. D. Cook, “Evidence of localized
wave transmission,” Phys. Rev. Lett., vol. 62, no. 2, pp. 147-150, Jan.
9, 1989.

A. M. Shaarawi, I. M. Besieris, and R. W. Ziolkowski, “Localized
energy pulse train launched from an open, semi-infinite, circular wave-
guide,” J. Appl. Phys., vol. 65, no. 2, pp. 805-813, 1989.

1. M. Besieris, A. M. Shaarawi, and R. W. Ziolkowski, “A bidirectional
traveling plane wave representation of exact solutions of the scalar wave
equation,” J. Math. Phys., vol. 30, no. 6, pp. 1254-1269, 1989.

E. Heyman, B. Z. Steinberg, and L. B. Felsen, “Spectral analysis of focus
wave modes,” J. Opt. Soc. Amer. A, vol. 4, no. 11, pp. 20812091, Nov.
1987.

R. W. Ziolkowski, “Localized transmission of electromagnetic energy,”
Phys. Rev. A., vol. 39, no. 4, pp. 2005-2033, Feb. 15, 1989.

J. V. Candy, R. W. Ziolkowski, and D. K. Lewis, “Transient waves:
Reconstruction and processing,” J. Acoust. Soc. Amer., vol. 88, no. 5,
pp. 2248-2258, Nov. 1990.

, “Transient wave estimation: A multichannel deconvolution
application,” J. Acoust. Soc. Amer., vol. 88, no. 5, pp. 2235-2247, Nov.
1990.

R. W. Ziolkowski and D. K. Lewis, “Verification of the localized wave
transmission effect,” J. Appl. Phys., vol. 68, no. 12, pp. 6083-6086,
Dec. 15, 1990.

J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar
theory,” J. Opt. Soc. Amer. A, vol. 4, no. 4, pp. 651-654, 1987.

J. Durnin, J. J. Miceli, Jr., and J. H. Eberly, “Diffraction-free beams,”
Phys. Rev. Lett., vol. 58, no. 15, pp. 1499-1501, Apr. 13, 1987.

J. Lu, H. Zou, and J. F. Greenleaf, “Biomedical ultrasound beam
forming,” Ultrasound Med. Biol., vol. 20, no. 5, pp. 403-428, July
1994.

J. Lu and J. F. Greenleaf, “Sidelobe reduction for limited diffraction
pulse-echo systems,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr.,
vol. 40, no. 6, pp. 735-746, Nov. 1993.

G. Indebetow, “Nondiffracting optical fields: Some remarks on their
analysis and synthesis,” J. Opt. Soc. Amer. A, vol. 6, no. 1, pp. 150-152,
Jan. 1989.

K. Uehara and H. Kikuchi, “Generation of near diffraction-free laser
beams,” Appl. Phys. B, vol. 48, pp. 125-129, 1989.

L. Vicari, “Truncation of nondiffracting beams,” Optics Commun., vol.
70, no. 4, pp. 263-266, Mar. 15, 1989.

D. K. Hsu, F. J. Margetan, and D. O. Thompson, “Bessel beam ultrasonic
transducer: Fabrication method and experimental results,” Appl. Phys.
Lett., vol. 55, no. 20, pp. 2066-2068, Nov. 13, 1989.

J. A. Campbell and S. Soloway, “Generation of a nondiffracting beam
with frequency independent beam width,” J. Acoust. Soc. Amer., vol.
88, no. 5, pp. 2467-2477, Nov. 1990.

J. Lu and J. F. Greenleaf, “Effect on Jy nondiffracting beam of deleting
central elements of Jo annular array transducer,” Ultrason. Imag., vol.
13, no. 2, p. 203, Apr. 1991 (abs.).

J. Lu, T. K. Song, R. R. Kinnick, and J. F. Greenleaf, “In vitro and in
vivo real-time imaging with ultrasonic limited diffraction beams,” IEEE
Trans. Med. Imag., vol. 12, no. 4, pp. 819-829, Dec. 1993.

J. Lu and J. F. Greenleaf, “Diffraction-limited beams and their ap-
plications for ultrasonic imaging and tissue characterization,” in New

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

[48]

Developments in Ultrasonic Transducers and Transducer Systems, F. L.
Lizzi, Ed., Proceedings SPIE, vol. 1733, pp. 92-119, 1992.

, “Pulse-echo imaging using a nondiffracting beam transducer,”
Ultrasound Med. Biol., vol. 17, no. 3, pp. 265-281, May 1991.
_, “Ultrasonic nondiffracting transducer for medical imaging,”
IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 37, no. 5, pp.
438-447, Sept. 1990.

, “Evaluation of a nondiffracting transducer for tissue characteri-
zation,” in IEEE 1990 Ultrason. Symp. Proc., 90CH2938-9, vol. 2, pp.
795-798, 1990.

, “Producing deep depth of field and depth-independent resolution
in NDE with limited diffraction beams,” Ultrason. Imag., vol. 15, no.
2, pp. 134-149, Apr. 1993.

J. Lu, X.-L. Xu, H. Zou, and J. F. Greenleaf, “Application of Bessel
beam for Doppler velocity estimation,” IEEE Trans. Ultrason., Ferro-
elec., Freq. Contr., vol. 42, no. 4, pp. 649-662, July 1995.

J. Ojeda-Castaneda and A. Noyola-lglesias, “Nondiffracting wavefields
in grin and free-space,” Microwave Optical Technol. Lett., vol. 3, no.
12, pp. 430-433, Dec. 1990.

R. Donnelly, D. Power, G. Templeman, and A. Whalen, “Graphic
simulation of superluminal acoustic localized wave pulses,” [EEE
Trans. Ultrason., Ferroelec., Freq. Contr., vol. 41, no. 1, pp. 7-12,
1994.

R. Donnelly and R. W. Ziolkowski, “Designing localized waves,” Proc.
Royal Soc. Lond., A, vol. 440, pp. 541-565, 1993.

J. Lu and J. F. Greenleaf, “Nondiffracting X waves—Exact solutions to
free-space scalar wave equation and their finite aperture realizations,”
IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 39, no. 1, pp.
19-31, Jan. 1992.

, “Experimental verification of nondiffracting X waves,” IEEE
Trans. Ultrason., Ferroelec., Freq. Contr., vol. 39, no. 3, pp. 441-446,
May 1992.

, “Theory and acoustic experiments of nondiffracting X waves,” in
IEEE 1991 Ultrason. Symp. Proc., 91CH3079-1, vol. 2, pp. 1155-1159,
1991.

J. Lu, H.-H. Zou, and J. F. Greenleaf, “A new approach to obtain limited
diffraction beams,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol.
42, no. 5, pp. 850-853, Sept. 1995.

T. K. Song, J. Lu, and J. F. Greenleaf, “Modified X waves with
improved field properties,” Ultrason. Imag., vol. 15, no. 1, pp. 36-47,
Jan. 1993.

J. Lu and J. F. Greenleaf, “A study of two-dimensional array transducers
for limited diffraction beams,” IEEE Trans. Ultrason., Ferroelec., Freq.
Contr., vol. 41, no. 5, pp. 724-739, Sept. 1994.

, “Steering of limited diffraction beams with a two-dimensional
array transducer,” in IEEE 1992 Ultrason. Symp. Proc., 92CH3118-7,
vol. 1, pp. 603-607, 1992.

, “Formation and propagation of limited diffraction beams,”
Acoust. Imag., Y. Wei and B.-L. Gu, Eds., vol. 20, pp. 331-343,
1993.

M. Fatemi and M. A. Arad, “A novel imaging system based on
nondiffracting X waves,” in [EEE 1992 Ultrason. Symp. Proc.,
92CH3118-7, vol. 1, pp. 609-612, 1992.

J. Lu and J. F. Greenleaf, “Comparison of sidelobes of limited diffraction
beams and localized waves,” Acoust. Imag., J. P. Jones, Ed., vol. 21 (to
be published in 1995).

, “Simulation of imaging contrast of nondiffracting beam trans-
ducer,” J. Ultrasound Med., vol. 10, no. 3 (suppl.), p. S4, Mar. 1991
(abs.).

, “Experiment of imaging contrast of Jy Bessel nondiffracting
beam transducer,” J. Ultrasound Med., vol. 11, no. 3 (suppl.), p. S43,
Mar. 1992 (abs.).

J. P. Wild, “A new method of image formation with annular apertures
and application in radio astronomy,” in Proc. Royal Soc. A, vol. 286,
pp. 499-509, 1965.

C. B. Burckhardt, P. A. Grandchamp, and H. Hoffmann, “Methods for
increasing the lateral resolution of B-scan,” Acoustic Holography, P. S.
Green, Ed., vol. 5, pp. 391413, 1973.

D. Vilkomerson, “Acoustic imaging with thin annular apertures,” Acous-
tic Holography, P. S. Green, Ed., vol. 5, pp. 283-316, 1973.

J. H. McLeod, “The Axicon: A new type of optical element,” J. Opt.
Soc. Amer., vol. 44, no. 8, pp. 592-597, Aug. 1954.

C. B. Burckhardt, H. Hoffmann, and P. A. Grandchamp, “Ultrasound
axicon: A device for focusing over a large depth,” J. Acoust. Soc. Amer.,
vol. 54, no. 6, pp. 1628-1630, Dec. 1973.

F. S. Foster, M. S. Patterson, M. Arditi, and J. W. Hunt, “The
conical scanner: A two transducer ultrasound scatter imaging technique,”
Ultrason. Imag., vol. 3, no. 1, pp. 62-82, Apr. 1981.




LU: BOWTIE LIMITED DIFFRACTION BEAMS FOR IMAGING

[49]

[50]

[51]

[52]

[53]

[54]

C. B. Burckhardt, P. A. Grandchamp, and H. Hoffmann, “Focusing
ultrasound over a large depth with an annular transducer—An alternative
method,” IEEE Trans. Sonics Ultrason., vol. SU-22, no. 1, pp. 11-15,
Jan. 1975.

A. Macovski and S. J. Norton, “High-resolution B-scan systems using a
circular array,” Acoustic Holography, N. Booth, Ed., vol. 6, pp. 121-143,
1975.

M. Moshfeghi, “Sidelobe suppression in annular array and axicon
imaging systems,” J. Acoust. Soc. Amer., vol. 83, no. 6, pp. 2202-2209,
June 1988.

J. Lu and J. F. Greenleaf, “A study of sidelobe reduction for limited
diffraction beams,” in IEEE 1993 Ultrason. Symp. Proc., 93CH3301-9,
vol. 2, pp. 1077-1082, 1993.

M. S. Patterson, F. S. Foster, and D. Lee, “Sidelobe and speckle
reduction for an eight sector conical scanner,” in IEEE 1981 Ultrason.
Symp. Proc., 81CH1689-9, vol. 2, pp. 632-637, 1981.

J. Lu and J. F. Greenleaf, “Sidelobe reduction of nondiffracting pulse-
echo images by deconvolution,” Ultrason. Imag., vol. 14, no. 2, p. 203,
Apr. 1992 (abs.).

[55]

[56]
(571
[58]
[59]

[60]

1063

S. W. Smith and O. T. von Ramm, “The Maltese cross processor:
Speckle reduction for circular transducers,” Ultrason. Imag., vol. 10,
no. 3, pp. 153-170, July 1988.

M. S. Patterson and F. S. Foster, “Acoustic fields of conical radiators,”
IEEE Trans. Sonics Ultrason., vol. SU-29, no. 2, pp. 83-92, Mar. 1982.
A. V. Oppenheim and R. W. Schafer, Digital Signal Processing. En-
glewood Cliffs, NJ: Prentice-Hall, 1975, ch. 5.
J. W. Goodman, Introduction to Fourier Optics.
Hill, 1968, ch. 2-4.

R. Bracewell, The Fourier Transform and its Applications.
McGraw-Hill, 1965, ch. 4 and 6.

P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Part I.
New York: McGraw-Hill, 1953, ch. 4-7.

New York: McGraw-

New York:

Jian-yu Lu (M’88), for photograph and biography, see p. 661 of the July
1995 issue of this TRANSACTIONS.



