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We investigate theoretically the nonlinear propagation of the limited diffraction Bessel beam in
nonlinear media, under the successive approximation of the KZK equation. The result shows that the
nth-order harmonic of the Bessel beam, like its fundamental component, is radially limited
diffracting, and that the main beamwidth of thenth-order harmonic is exactly 1/n times that of the
fundamental. ©2000 Acoustical Society of America.@S0001-4966~00!00503-8#
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INTRODUCTION

Bessel beams were first developed in 1941 by Stra
and were named undistorted progressive waves.1 In the past
decade, both Bessel beams and a more general type of b
calledX wave have been widely investigated in the fields
acoustics and optics.2,3 Theoretically, aJ0 Bessel beam~the
lowest-order Bessel beam! with an infinite aperture has
beam profile of thezeroth-order Bessel function of the firs
kind in the transverse plane and can travel to an infin
distance without changing its beam profile and amplitu
Numerical simulations and experiments show that even w
produced with a finite aperture, this beam has a very la
depth of field where the beam profile approximately ma
tains a J0 Bessel function distribution. Because of the
properties, the Bessel beam may have many poten
applications,2–6 such as ultrasonic imaging. It may also b
applied to harmonic imaging developed recently.3,5,7–9In ad-
dition, the dispersion feature of theJ0 beam has been dem
onstrated to be applicable in nonlinear optics, where
beam can be viewed as a light beam with a tuna
wavelength.10

In previous work, we studied theoretically the seco
harmonic generation of the Bessel beam.7 Analysis indicates
that the second harmonic of this beam is limited diffracti
in the radial direction and the main beamwidth of the seco
harmonic is equal to one-half of that of the fundamen
component in the Bessel field. In this paper, we investiga
more general case. It will be shown that for aJ0 Bessel
beam, the harmonic of an ordern is also radially limited
diffracting and its main beamwidth is exactly 1/n times that
of the fundamental component.

I. THEORY AND RESULTS

Assuming that an axial-symmetric source, with an an
lar frequencyv and a characteristic radiusa, oscillates har-
monically in time and that the sound absorption of the m
dium can be neglected~in attenuating medium, an
exponential decay of the fundamental may occur!, from the
KZK ~Khokhlov–Zabolotskaya–Kuznetsov! equation7,11 and
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the perturbation method, we obtain the solution for the fu
damental component of waves in terms of dimensionl
variables11

q̄l~j,h!5
2

ih E
0

`

expS i
j21j82

h D J0S 2jj8

h D q̄l~j8!j8 dj8,

~1!

and the solution for thenth-order harmonic component

q̄n~j,h!5 (
l 51

n21

q̄nlm~j,h!, ~2a!

where

q̄nlm~j,h!5
n2

8 E
h850

h E
j850

` j8

h2h8

3expS in~j21j82!

h2h8 D J0S 2njj8

h2h8D
3q̄l~j8,h8!q̄m~j8,h8!dj8 dh8, ~2b!

and n5 l 1m. @Notice that in Eq.~2a! we have ignored the
production of lower harmonics from higher harmonics b
cause the pressure amplitude of the (m11)th-order har-
monic is assumed to be much smaller than that of themth-
order harmonic.# In these equations,j5r /a andh52z/ka2

are the radial and axial dimensionless coordinates,k5v/c,
andc is the speed of sound of medium. Correspondingly,
notationsr and z denote the radial and axial coordinate
q̄l(j8) is the distribution function of the sound beam on t
plane h50. Equations~1! and ~2! can be viewed as the
complex-valued pressure amplitudes in a dimensionless f
for the fundamental andnth-order harmonic components, re
spectively. These solutions are derived under the conditi
that the Mach number«!1 and (ka)2@1.

Assume that theJ0 beam with a scaling parametera has
the form

q̄l~j8!5J0~aj8! ~3!

at the source. In previous work7 it has been shown that th
fundamental component of this beam is given by

q̄l~j,h!5J0~aj!expS 2
i

4
a2h D , ~4!
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and the second harmonic under an asymptotic condi
(a2h is sufficiently large! can be expressed as

q̄2~j,h!5&S ei3p/4

4aAp D J0~2aj!h1/2expS 2
ia2

2
h D . ~5!

In the following, we will derive a more general case that t
nth-order harmonic component of the Bessel beam has
J0(naj) function distribution in the radial distance. Fro
Eqs. ~4! and ~5!, we can assume in general that under
asymptotic condition (a2h is sufficiently large! the l th- and
mth-order harmonics of the Bessel beam are given by

q̄l~j,h!5AlJ0~ laj!h~ l 21!/2 expS 2
i l

4
a2h D ~6!

and

q̄m~j,h!5AmJ0~maj!h~m21!/2 expS 2
im

4
a2h D , ~7!

respectively. From Eq.~2b!, it follows that ~notice thatq̂mln

is different fromq̄mln by a constant!

q̂nlm~j,h!5E
h850

h E
j850

` j8

h2h8

3expS in~j21j82!

h2h8 D J0S 2njj8

h2h8D
3J0~ laj8!J0~maj8!

3expS 2
in

4
a2h8Dh8~n/2!21 dj8 dh8. ~8!

To simplify, we change Eq.~8! first to a triple integral

q̂nlm~j,h!5
1

p E
h850

h E
j850

` E
t850

p j8

h2h8

3expS in~j21j82!

h2h8 D J0S 2njj8

h2h8D
3J0~laj8!expS 2

in

4
a2h8D

3h8~n/2!21 dj8 dh8 dt8, ~9!

wherel5( l 21m222lm cost8)1/2 and the formula

pJ0~X!J0~x!5E
0

p

J0@~X21x222Xx cost !1/2#dt ~10!

has been used. Applying the following

E
0

`

J0~at !J0~bt !e6 ig2t2tdt

56
i

2
g22 expF7

i

4
g22~a21b2!GJ0S 1

2
abg22D , ~11!

we have
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q̂nlm~j,h!5
i

2pn Eh850

h E
t850

p

J0~laj!expS 2
ia2l2h

4n D
3expF2

ia2

4
h8S l2

n
2nD Gh8~n/2!21 dh8 dt8.

~12!

Formally, the integral abouth8 in the equation above can b
expressed in terms of the incomplete Gamma funct
P(a,z), which is defined by formula 6.5.1 from Ref. 12. W
then obtain

q̂nlm~j,h!5
2i

pn
expS 2

ina2

4
h D E

t50

p/2

J0~laj!b2n/2

3exp~bh!GS n

2D PS n

2
,bh Ddt, ~13!

with b5 ia2( lm/n)cos2 t and the transformed variablet
5t8/2. In order to analyze Eq.~13!, we concentrate on the
function

f n~ t !5b2n/2 exp~bh!GS n

2D PS n

2
,bh D . ~14!

Note that this function resembles function~11! of Ref. 7, and
its real and imaginary parts are extremely similar to the de
function under the asymptotic condition mentioned abo
Therefore, Eq.~13! can be approximated well under this co
dition with

q̂nlm~j,h!5
2ei3p/4

Apn2a
expS 2

ina2

4
h D

3J0~naj!h~n21!/2A n

lm
. ~15!

From Eqs.~2! and ~15!, one obtains thenth-order harmonic
component of the Bessel beam

q̄n~j,h!5AnJ0~naj!h~n21!/2 expS 2
in

4
a2h D . ~16!

The coefficientAn is given by the following recursive rela
tionship @obtained by inserting both Eqs.~16! and ~15! into
Eq. ~2a!#

An5
Anei3p/4

4Apa
(
l 51

n21

AlAmA 1

lm
. ~17!

Let

An5An S ei3p/4

4Apa
D n21

Cn , ~18!

from Eq. ~17!, we have

Cn5 (
l 51

n21

ClCm or Cn5 (
l 51

n21

ClCn2 l , ~19!

whereCn is the Catalan number. The first two terms ofCn

are given byC151 andC251, and generally

Cn5
1

n S 2n22
n21 D . ~20!
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Finally, the nth-order harmonic component of the Bess
beam can be expressed by

q̄n~j,h!5AnCn S ei3p/4

4Apa
D n21

expS 2
ina2

4
h D

3J0~naj!h~n21!/2. ~21!

Notice that Eq.~21! is obtained by assuming the interactio
of nonlinear components in the nearfiled is negligible so t
the asymptotic results in Eqs.~6! and~7! can be inserted into
Eq. ~2! to get Eq.~8!.

II. DISCUSSION

From Eq.~21!, we see that under the asymptotic con
tion (a2h is sufficiently large! thenth-order harmonic of the
Bessel beam is radially limited diffracting and its beamwid
is exactly 1/n times that of the fundamental. Many adva
tages of the Bessel fundamental beam have been dem
strated in the fields of ultrasonic imaging and tiss
characterization.5,3 Here we point out an additional advan
tage of this beam when it is applied to harmonic imaging d
to the nonlinearity of media.7–9 It is known theoretically and
experimentally that for conventional ultrasonic beams~fo-
cused or not!, the beamwidth of the nonlinearly generat
nth-order harmonic is generally 1/An times that of the
fundamental.13,14 The present analysis indicates that in ultr
sonic imaging due to the signal of thenth-order harmonic
component, higher resolution can be obtained by using
Bessel beam rather than conventional beams that have
same resolution at the fundamental frequency. It should
noticed that in frequency-dependent attenuating media s
as biological soft tissues, harmonics of very high orders
very weak and thus cannot be measured in practice. H
ever, this is true for both limited diffraction Bessel beam
and conventional beams.

We must emphasize the validity of Eq.~21! that is de-
rived based on the so-called quasilinear~or successive! ap-
proximation method. This equation is not a uniformly acc
rate expression for thenth-order harmonic component of th
Bessel beam. From the perturbation theory, the analysi
this paper is valid when the following inequality is satisfie

S 2

p D 1/2b~ka!2

a S u0

c Dh1/2,
1

&
, ~22!

whereb is the acoustic nonlinearity coefficient of the m
dium andu0 is the vibration velocity at the source cente
This condition coincides with that obtained in the seco
harmonic case.7 This indicates that thenth-order harmonic
Bessel beam has a finite depth of field. In fact, the depth
field of the harmonics may be similar to that of the fund
mental.

The current analysis is based on the ‘‘ideal’’ case un
which the aperture of the sound source, i.e., the Bessel b
function, is infinite. In this case, the depth of field of th
1214 J. Acoust. Soc. Am., Vol. 107, No. 3, March 2000 D
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Bessel fundamental beam is extended into infinity. Acco
ingly, the depth of field of annth-order harmonic, as pre
dicted by Eq.~21!, is also infinite. In practical applications
however, the aperture sizes of beams are always finite. W
a finite aperture, the depth of field2,4 of a Bessel beam is
finite, and is a function of the scaling parameter, the aper
radius, and the wavelength of the beam. Within the depth
field, the property of the fundamental Bessel beam can
be characterized by Eq.~4! and the same may also be true f
the nth-order harmonic@Eq. ~21!# of the Bessel beam bu
with a beamwidth that isn times smaller than that of the
fundamental. This has been verified numerically in the c
of the second harmonic.8

Finally, our analysis has ignored the attenuation
sound in media. Although this has little influence on t
radial distribution of sound beams, it leads to an exponen
decay of the amplitudes in axial direction. In medical app
cations, higher harmonics have a higher attenuation that
limit the depth of penetration. A further theoretical and e
perimental study will be conducted for the higher harmon
in attenuating media.

III. CONCLUSION

We have obtained a theoretical expression of
nth-order harmonic component of the Bessel beam. The
sult shows that annth-order harmonic of the Bessel beam
also limited diffracting in the radial direction and the ma
beamwidth is exactly 1/n times that of the fundamental com
ponent.
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