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Abstract – Recently, a high frame rate (HFR) imaging 
method based on limited diffraction beam (LDB) 
theory has been developed. In this method, a two-
dimensional (2D) or three-dimensional (3D) image is 
constructed with a single plane wave transmission 
and thus a theoretical frame rate of 3750 
frames/second can be obtained for biological soft 
tissues at a depth of about 200 mm. Because a plane 
wave is used to transmit, images can only be obtained 
in a small area if an object is illuminated with a 
transducer of a small footprint. In this paper, we 
extend the HFR method by using a cylindrical wave 
to illuminate an object. Mathematical formulas were 
derived and computer simulations were performed to 
verify the method. The method allows to increase the 
illumination area by using a transducer of a small 
footprint, which is important for applications such as 
cardiac imaging where acoustic window sizes are 
limited.  

I. INTRODUCTION 

 
Traditionally, medical ultrasound images are 

obtained with focused beams that illuminate only a 
small area. To construct an image, multiple 
transmissions of ultrasound beams are required. 
Because the speed of sound in biological soft tissues 
is finite (about 1500 m/s), image frame rate is low, 
leading to distorted images of fast moving objects 
such as the heart and flowing blood. To increase 
frame rate, the number of transmissions needs to be 
reduced. Recently, a high frame rate (HFR) imaging 
method has been developed based on limited 
diffraction beam (LDB) theory [1,2]. With this 
method, a theoretical frame rate of 3750 frames/s can 
be achieved for either 2D or 3D imaging of biological 
soft tissues (speed of sound of about 1500 m/s) at a 
depth of about 200 mm. Although the frame rate is 
potentially high, this method requires a transducer of 
large footprint in order to illuminate an entire object 
of interest, which is not suitable for applications 

where acoustic windows are small and thus a small 
footprint is desirable.  

 
In this paper, a cylindrical wave instead of a plane 

wave is used in transmission. This reduces the 
footprint while maintaining a high frame rate and 
increasing image field of view. To construct images, 
a relationship between the filtered object function 
such as ultrasound reflectivity distribution and 
received echo signals was developed. Because the 
filter has a very sharp spatial response (similar to a 
δ -function), high-resolution and low-sidelobe 
images can be constructed. To verify the method, 
computer simulations were performed. Results are 
consistent with those predicted by the theory.  

 

 

II. THEORY 

 
In this section, a relationship between the filtered 

object function and the received echo signals will be 
developed. From the wave equation, it is clear that a 
cylindrical wave can be approximated with a zeroth-
order Hankel function [3]. If the argument of the 

 
Fig. 1. Cylindrical coordinate of transducer and 

a point scatterer  



Hankel function is much larger than 1, we have the 
following approximation:  
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where k is the wave number, 2 2r x y= +  is the 

radial distance along the propagation direction of the 
cylindrical wave, and A(k) is the transmission transfer 
function of the transducer.  

 
From Eq. (1) and the Rayleigh-Sommerfeld 

diffraction formula [4], the temporal spectrum of the 
echo signal received from a transducer element at 
( , , )e e er zθ  is given by (see Fig. 1 for the coordinate 
system):  
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where θ  is polar angle, r is the radius, z is the axis of 
the cylinder, which is perpendicular to the plane 
defined by r and θ , and V is the volume of object. 
T(k) is the reception transfer function of the 
transducer, and ),,( zrf θ  is the object function, 

where ( zr ,,θ ) represents the coordinate of a point 
scatter.  

Our objective is to construct the object function 
from (2). It is clear that (2) is a convolution of the 
functions ),,( zrf θ  and ( , , , )h k r zθ  in terms of both 
θ  and z , i.e.,  
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where ,zθ∗  represents the convolution in terms of 

both θ  and z , and ( , , , )h k r zθ  is defined as:  
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Taking Fourier transform on both sides of (3), we 

have:  
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where ( , , )zR k k kθ  and ( , , , )zH k r k kθ  are the Fourier 
transform of ( , , )R k zθ  and ( , , , )h k r zθ , respectively, 
in terms of both θ  and z .  

Multiplying both sides of (5) with *( , , , )zH k r k kθ′ , 
where “∗” represents complex conjugation, and then 
integrating the results over the wave number, k , we 
have:  
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It is clear from (6) that the point spread function 

(PSF) of the imaging system is given by: 
{ }1

,( , , , ) ( , , , )
zk k zg r r z G r r k k

θ θθ −′ ′=F . From Fig. 2, one 

can see that the PSF has a sharp peak around r r′= , 
0θ = , and 0z = , and thus the following relationship 

can be assumed:  
 

( , , , ) ( , , ) .g r r z g r r zθ θ′ ′ ′≈ −              (8) 

From (6) and (8), the object function can be 

constructed approximately:  
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where , ,r zθ∗  represents the convolution with respect 

to , ,  and r zθ . For an ideal imaging system where 
( , , )g r zθ′  is a δ -function, ( , , )f r zθ′  is the object 

function, ( , , )f r zθ .  
 

III. SIMULATION 

 
To verify the theory developed in the previous 

section, computer simulations were performed. In the 
simulation, the following parameters were assumed: 
the transducer had a center frequency of 1.5 MHz, the 
combined transmission and reception transfer 
function, ( ) ( )A k T k , was represented with a 
Blackman window function with a full width at half 
maximum (FWHM) or –6dB bandwidth of about 
81% of the center frequency, the speed of sound of 
the medium was 1500 m/s, the radius of the 
cylindrical transducer, er , was 40 mm; the width of 
the transducer in the z direction was 50 mm, the 
angular width of the transducer was 90o, the number 

of elements of the transducer was128 128×  (along z 
and θ directions), and objects were composed of 
point scatterers. In transmission, all the array 
elements were excited simultaneously to produce a 
cylindrical wave, which was obtained with the 
Rayleigh-Sommerfeld diffraction formula. Echoes 
from the object were received with the same array 
and processed to construct images with the theoretical 
analysis in the previous section. I.e., the steps below 
were followed:  

 
1) Simulating the transmission wave with the 

Rayleigh-Sommerfeld diffraction formula.  
2) Obtaining Fourier transform of received signal 

(see (5)) in terms of both θ  and z : 

,( , , ) { ( , , )}z zR k k k R k zθ θ θ=F .  

3) Multiplying the result with a known function, 
*( , , , )zH k r k kθ′ , and then integrating it over k 

(see (6)).  
4) Constructing image with an inverse Fourier 

transform (see (9)).  
 
Two objects were used in the simulations. One 

contains a single point scatterer (Fig. 1) and another 
has 9 point scatterers located at three perpendicular 
planes (Fig. 3). The center of the objects is located at 

0( ,0,0)r . Constructed images of these objects are 
shown in Figs. 2 and 4, respectively.  

 

Figs. 2(a), 2(b), and 2(c) show the calculated PSF, 
( , , )g r r zθ′ ′−  (see (8)), in z θ−  ( r r′=  = 90 mm), 

 
Fig. 3. A 3D object consisting 9 point 

scatterers in three orthogonal planes.  

 
Fig. 2. Theoretical (top row) and constructed
(bottom row) point spread functions (PSF) of the
cylindrical wave imaging system in z θ−  ((a) and
(d)), r θ−  ((b) and (e)), and r z−  ((c) and (f))
planes.  



r θ−  (z = 0 mm and r′  = 90 mm), and z r−  (θ  = 0o 
and r′  = 90 mm) planes, respectively. The PSF 
constructed from the received echo signal is shown in 
Figs. 2(d), 2(e), and 2(f), corresponding to Figs. 2(a), 
2(b), and 2(c), respectively. The dimensions of the 
images are 50 mm in both r and z directions, and are 
90o in θ  direction. The distance of the point scatterer 
from the curvature center of the transducer is 90 mm. 
From Fig. 2, it is clear that the constructed PSF is 
very close to that calculated theoretically (see (7)).  

Constructed images of the 3D object in Fig. 3 are 
shown in Fig.4. The distance between the centers of 
the 3D object and the transducer curvature is 90, 140, 
and 240 mm, respectively.  
 

IV. CONCLUSION 

 
A method has been developed to construct 3D 

images of an imaging system that uses a cylindrical 
wave in transmission. Because cylindrical wave is 
used, images of a larger field of view for a larger 
object can be constructed with a transducer of a 
smaller footprint. In addition, the method uses 
Fourier transform to construct images and thus the 
amount of computation required is smaller than that 
of the conventional delay-and-sum method.  

Because only one transmission is needed to 
construct a 3D image, theoretically, image frame rate 

could be very high (up to 3750 frames/s for biological 
soft tissues at a depth of about 200 mm) with this 
method.  

From computer simulations, it is seen that images 
of high resolution and low sidelobe can be 
constructed. In addition, the method can be easily 
adapted for 2D imaging where a 1D, instead of 2D 
array transducer is used. (In 2D case, object is 
assumed to be uniform along z direction.) To 
compensate for signal-to-noise ratio due to diverging 
transmitting wave, coded excitations such as FM 
chirps can be used.  
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Fig. 4. Constructed images in z θ−  (top row) and

r θ−  (bottom row) planes, at distances (between the
centers of the 9-point object and the curvature of the
cylindrical transducer) of 90 mm ((a) and (d)), 140
mm ((b) and (e)), and 240 mm ((c) and (f)).  
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