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Fourier-Bessel Field Calculation and Tuning of
a CW Annular Array

Paul D. Fox, Jiqi Cheng, and Jian-yu Lu, Senior Member, IEEE

Abstract—A 1-D Fourier-Bessel series method for com-
puting and tuning the linear lossless field of flat continu-
ous wave (CW) annular arrays is given and discussed with
both numerical simulation and experimental verification.
The technique provides a new method for modelling and
manipulating the propagated field by linking the quantized
surface pressure profile to a set of limited diffraction Bessel
beams propagating into the medium. In the limit, these be-
come a known set of nondiffracting Bessel beams satisfying
the lossless linear wave equation, which allow us to derive a
linear matrix formulation for the field in terms of the ring
pressures on the transducer surface. Tuning (beamforming)
of the field then follows by formulating a least squares de-
sign with respect to the transducer ring pressures. Results
are presented in the context of a 10-ring annular array op-
erating at 2.5 MHz in water.

I. Introduction

In this paper, we describe a method for computing and
tuning linear lossless fields from flat CW annular ar-

rays using 1-D Fourier-Bessel series [1], [2]. The use of
these series allows the propagated field to be described
as a set of J0 Bessel beams [3], [4], giving a linear map-
ping between the spatial ring pressures on the transducer
surface and the propagated field at any point in space.
Bessel beams have already been extensively studied [5]–
[8], and this work builds on previous knowledge to draw
up a method for both computing and tuning (beamform-
ing) the propagated field by using a set of Bessel beam
basis functions. In [9], these were applied across the trans-
ducer surface to decompose the emitted field into a known
set of limited diffraction Bessel beams. In this paper, we
extend the analysis to include the entire plane beyond the
outer edge of the transducer, which, in the limit, describes
the emitted field as a set of known nondiffracting Bessel
beams. This feature allows us to apply analytic techniques
to solve for the field as a weighted set of exact Bessel solu-
tions to the wave equation, constituting a new field analy-
sis tool complimenting other approaches such as [10]–[14].
We show that the method correlates well with both pre-
vious experimental results [5] and simulations based on
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the (slower) Rayleigh-Sommerfeld diffraction formula. The
method also allows us to tune the field in a least squares
sense with respect to a given desired field distribution.
This has been introduced briefly through simulations in
[15], modelling the tuning of a Bessel beam on an equal
area annular array. In this paper, we extend the method
to different tuning designs and an alternative array geom-
etry [5].

Section II gives model definitions for the governing wave
equation and structure of the CW annular arrays consid-
ered. Section III introduces the application and interpre-
tation of 1-D Fourier-Bessel series in the context of an-
nular arrays. In Section IV, we explain how to compute
the propagated field using Fourier-Bessel series, with a nu-
merical example provided in Section V. Section VI then
extends the analysis of the field propagation to derive a
least squares beamforming design, with numerical exam-
ples given in Section VII. Finally, in Section VIII, we sum-
marize, draw conclusions, and suggest further work.

II. Model Definitions

A. Propagation Model

Annular arrays have circular symmetry around the
propagation axis, for which we assume the governing cir-
cular symmetric linear wave equation[
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]
f(r, z, t) = 0 (1)

in which f(r, z, t) is the field pressure relative to static
pressure, r is the radial distance from the cylindrical cen-
terline, z is the outward propagation distance perpendicu-
lar to the transducer surface (placed at z = 0 and centered
around r = 0), and c is the speed of sound (assumed real).
For a given wavenumber k = ω/c, this equation has Bessel
beam solutions [4], [7] of the form

f(r, z, t) = J0(αr) · ejβz · e−jωt

α2 + β2 = k2.
(2)

B. Annular Arrays

We then consider N -ring flat annular arrays with
monochromatic surface pressure q(r, t) = q(r)e−jωt, in
which q(r) is the spatial quantization profile and ω is
the angular frequency. In annular arrays, q(r) is step-
wise constant with discrete quantization values qp, where
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p = 1, . . . , N is the ring number, and p = 1 for the inner
ring with p = N for the outer ring. Inner and outer ring
radii are denoted r−

p and r+
p , respectively, with r−

1 = 0,
r+
N = R by definition and the kerf between successive rings

being r−
p − r+

p−1. Relative time delays τp on each ring may
also exist, allowing qp to take the complex form

qp = γp + jδp = |qp| ejθp (3)

such that each ring emits pressure qpe
−jωt = |qp| ejθpe−jωt

= |qp| e−jω(t−τp), where |qp|, θp, and τp are the respective
ring magnitudes, phases, and time delays obtained from
(3) as

|qp| =
√

γ2
p + δ2

p, θp = −j ln(qp/ |qp|), τp = θp/ω.
(4)

III. Use of 1-D Fourier-Bessel Series

A. Application of Fourier-Bessel Series

We begin by applying 1-D Fourier-Bessel series [1], [2]
to model the quantized surface pressure q(r) as an infinite
set of known basis Bessel functions. This series is defined
by

q(r) =
∞∑

i=1

Ai · J0(αir)

αi = xi/a, J0(xi) = 0

Ai =
2

a2J2
1 (xi)

∫ a

0
q(r) · J0(αir)rdr

(5)

where J0(·) is the Bessel function of the first kind of order
zero, Ai is the appropriate set of weighting coefficients, and
the roots xi are the known infinite set of monotonically
increasing positive solutions to J0(xi) = 0. The series in
(5) is then valid over the radial range 0 ≤ r ≤ a , where a
is any desired modelling aperture subject to the constraint
q(a) = 0, as J0(αia) = 0 by definition of J0(xi) = 0. (Note
that for ease of discussion, we use the term aperture here to
refer to the radial dimension a and not the corresponding
diameter 2a).

B. Interpretation of Fourier-Bessel Series

What the Fourier-Bessel series in (5) represents phys-
ically is that we may model both the quantized surface
pressure q(r) at z = 0 as q1 . . . qN over N rings of the
transducer in the range 0 ≤ a ≤ R, and then as q(r) = 0
beyond the transducer surface a > R, as the (relative) sur-
face pressure is zero by definition beyond the transducer
edge. This satisfies the condition q(a) = 0 as required by
the definition of the series. Then, q(r) in (5) equates to
a surface profile q(r)e−jωt =

∑∞
i=1 Ai · J0(αir) · e−jωt,

and, if this profile is implemented over an infinite aper-
ture (a → ∞), each component i represents an exact non-
diffracting Bessel beam solution [4], [7] at the transducer

surface z = 0 to the wave (1). The general propagating
solution for z > 0 is then Ai ·J0(αir) ·ejβiz ·e−jωt, and the
total field f(r, z, t) may therefore be defined as the sum of
all of these components, namely

f(r, z, t) = lim
a→∞

∞∑
i=1

Ai · J0(αir) · ejβiz · e−jωt

βi =
√

k2 − α2
i

(6)

in which k = ω/c is the wavenumber, the real parameter
αi ≥ 0 is the scaling parameter in the r direction, and βi

is the component in the z direction. In addition, because
the positive Bessel roots xi ≈ πi − π/4 in (5) increase
monotonically with index i, the corresponding αi = xi/a
terms in (6) also increase monotonically for a given value
of a. This causes a change in propagation characteristics
for the distinct cases αi ≤ k and αi > k. Because the
wavenumber k is assumed real, then βi is purely real when
αi ≤ k and all corresponding components Ai · J0(αir) ·
ejβiz · e−jωt propagate to infinity in the z direction for
z > 0. However, when αi > k, the values βi become purely
imaginary, and these propagate as Ai · J0(αir) · e−|βi|z ·
e−jωt, which is to say with exponential decay in the z > 0
direction. These are evanescent beam components, which
are usually all negligible, as the magnitudes of |βi| involved
typically cause the beam amplitudes Ai ·J0(αir) ·e−|βi|z to
decay to negligible levels within the first few wavelengths
of the transducer surface.

IV. Theory for Field Computation

A. Computation Mechanism

Therefore, if we define l(k, a) as the number of nonneg-
ligible (generally exclusively nonevanescent) components
for a given application, the original infinite sum in (6) ef-
fectively becomes replaced by the truncated finite sum

f(r, z, t) = lim
a→∞

l(k,a)∑
i=1

Ai · J0(αir) · ejβiz · e−jωt, z > 0
(7)

in which all required parameters Ai, αi, βi are now known
from (5) and (6). Further, from the root approximation
xi ≈ πi − π/4 and the definition αi = xi/a, we have
αia ≈ πi − π/4. Hence, the coefficient index i = l(k, a)
at which the swap between nonevanescent and evanescent
characteristics occurs (αi = k) is given by

l(k, a) ≈ ka/π + 1/4. (8)

Note that this is independent of the surface pressure pro-
file q(r), but proportional to both wavenumber k and mod-
elling aperture a. Therefore, implementing a → ∞ in (7)
causes l(k, a) → ∞, and, hence, in theory at least, we
still need to sum an infinite number of terms to compute
f(r, z, t) exactly. Clearly, this is not possible from a prac-
tical point of view, but it is possible is to iterate a toward
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infinity in (7) and wait for the corresponding field calcu-
lations f(r, z, t) to converge to within an acceptable level.
Typically, we might use a = 10R, a = 20R, a = 30R, and
so on, until the maximum change in field intensity between
successive a values drops either to within a given number
of decibels, or a given relative percentage (e.g., 0.1%). See
Section V for a detailed numerical example of computing
the field.

B. Numerical Aspects

For annular arrays as per Section II-B, the integral for
the weighting coefficients Ai in (5) may be evaluated piece-
wise over the N rings p = 1, . . . , N to give

Ai =
N∑

p=1

Ci,p · qp

Ci,p = 2
[
r+
p J1(αir

+
p ) − r−

p J1(αir
−
p )

]
/axiJ

2
1 (xi)

(9)

where J1(·) is the first-order Bessel function of the first
kind. The coefficients Ai are, therefore, generally complex,
as Ci,p is real by definition, but qp are complex according
to Section II-B. Notice also that all coefficients Ci,p are
functions of geometry only, and need only be computed
once for a given transducer layout, as they are independent
of the ring pressures qp. One may then also employ the
approximations

J0(x) ≈
√

2/πx · cos(x − π/4), x ≥ 1

J1(x) ≈
√

2/πx · cos(x − 3π/4), x ≥ 2
(10)

from [1] to obtain the roots xi to J0(xi) = 0 as xi ≈ πi −
π/4, and, hence, J1(xi) ≈

√
2/πxi, leading to axiJ

2
1 (xi) ≈

2a/π and hence

Ci,p ≈ π
[
r+
p J1(αir

+
p ) − r−

p J1(αir
−
p )

]
/a (11)

which shows that |Ci,p| is bounded for all finite r+
p , r−

p , a
and all i, as |J1(·)| < 0.6 by definition. In fact, |Ci,p| → 0
as αi → ∞, because αi → ∞ as i → ∞ and |J1(x)| → 0
as x → ∞ by definition. Therefore, |Ai| → 0 as αi → ∞
because all ring values qp are fixed and finite. Note also
two further numerical features. First, from (11) and (9)
|Ai| decreases with increasing a, as |Ci,p| decreases with
increasing a for a fixed value of i. Second, because the
monotonically increasing Bessel root values xi are given
by xi ≈ πi − π/4, then xi − xi−1 ≈ π, and, hence, con-
secutive alpha parameters in the series are spaced by an
amount αi − αi−1 = (xi − xi−1) /a ≈ π/a. This spacing
decreases with increasing a, and an increasing number of
nonevanescent alpha parameters appear in the nonevanes-
cent region αi ≤ k as a is increased. It is also the reason
why l(k, a) → ∞ as a → ∞ because then αi − αi−1 → 0
and an infinite number of αi parameters appear in a finite
interval 0 < αi ≤ k.

Notice also that implementing a > R is equivalent to
considering an equivalent transducer with N ′ = N + 1
rings, in which the outer ring has quantization level qN ′ =

Fig. 1. Quantization profile (upper) and nonevanescent Fourier-
Bessel coefficients Ai (lower) for modelling aperture a = R.

qN+1 = 0, inner radius r−
N+1 = r+

N = R, and outer ra-
dius r+

N+1 = a. Theoretically, this gives rise to a new sum

Ai =
∑N ′=N+1

p=1 Ci,p · qp in place of Ai =
∑N

p=1 Ci,p · qp in
(9), but because qN ′ = 0 by definition, the sum remains
fixed in practice at that given in (9). However, the Ci,p

coefficients change in (9) through their dependence on a,
and, therefore, different Ai weighting distributions are ob-
tained for different values of a. (See the plots supplied in
Section V for a full illustration.)

V. Example of Field Computation

In this section, we illustrate the Fourier-Bessel method
numerically and compare it with both experimental field
results and Rayleigh-Sommerfeld simulations with Fresnel
approximations.

A. Transducer Definition

Consider the Bessel transducer of Lu and Greenleaf de-
scribed in [5]. The transducer is an N = 10-ring Bessel-
design transducer whose ring edges are located nominally
at the first 10 zeros of J0(αr), where α = 1202.45 m−1. In
practice, the transducer has kerf of approximately 0.2 mm,
such that in terms of the notation of Section II-B, r−

1 = 0,
r+
1 = x1/α−kerf/2, r−

2 = x1/α+kerf/2, and so on. Operat-
ing conditions are f = 2.5 MHz in water at speed of sound
c = 1500 m/s, giving wavenumber k = 10471.98 m−1. The
R = 25-mm transducer has its ring pressures qp (solid lines
in Fig. 1, upper) chosen as the peak value of each respec-
tive Bessel lobe (dashed line in Fig. 1, upper).

B. Illustration of Field Convergence

The convergence principle for the field calculation as
a → ∞ is illustrated in Fig. 1 through 5. Beginning with
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Fig. 2. −30 dB contour levels for field calculation with a = R.

Fig. 3. Quantization profile (upper) and nonevanescent Fourier-
Bessel coefficients Ai (lower) for modelling aperture a = 5R.

a = R = 25 mm, we obtain l(k, a) = 83 nonevanescent
Ai coefficients, as shown in Fig. 1 (lower). See [16] and [9]
for a full discussion of the significance of the different Ai

weightings and their associated field components. The cal-
culation field based on a = R is then shown in Fig. 2, where
the lines shown represent the calculated −30 dB field con-
tours. Note that we do not yet assume this to be the true
field because we have not yet begun the iteration process of
allowing a → ∞. In Fig. 3 and 4, we then show the corre-
sponding results for modelling aperture a = 5R = 125 mm.
In this case, there are l(k, a) = 416 nonevanescent Ai coef-
ficients as shown in Fig. 3 (lower). Notice that the number
of coefficients has increased while the relative magnitudes
have decreased as a has been increased; both these proper-
ties were predicted by the discussion given in Section IV-B.

Fig. 4. −30 dB contour levels for field calculation with a = 5R.

Fig. 5. −30 dB contour levels for field calculation with a = 10R.

The −30 dB field plot in Fig. 4 has also changed consid-
erably with respect to Fig. 2, and so the modelling aper-
ture is then increased to a = 10R = 250 mm for which
l(k, a) = 833, and the corresponding field plot is given
in Fig. 5. This plot has changed much less than was the
case previously, indicating that the convergence of the field
calculation has begun to take place. As the aperture is
increased to a = 20R and a = 30R, no further visible
changes are apparent in the −30 dB plots, and the max-
imum relative change in field intensity encountered any-
where in the entire region of interest is found to drop to
within less than 1%. For practical purposes, we consider
convergence to have taken place at a = 30R = 750 mm for
which l(k, a) = 2500 coefficients. (See Table I for a fuller
set of field parameters as a function of modeling aperture
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TABLE I
Field Calculation Parameters as a Function of Increasing Aperture Ratio.

Aperture ratio a = R a = 5R a = 10R a = 20R a = 30R

Number of nonevanescent coefficients 83 416 833 1666 2500
Maximum relative field intensity change present (%) — 82.65 15.69 1.93 0.79
Maximum field intensity present (dB) 10.74 9.48 9.48 9.48 9.48
Minimum field intensity present (dB) −92.55 −84.41 −72.34 −74.32 −73.44

Fig. 6. Nonevanescent coefficient values Ai versus alpha values αi for
a = R, a = 5R, a = 10R and wavenumber k = 10 471.98 m−1.

a). Finally, in Fig. 6 and 7, respectively, the Ai coeffi-
cients are plotted against αi and corresponding axicon an-
gles ζi = sin−1(αi/k) for the three first apertures a = R,
a = 5R, a = 10R. As commented previously, the coefficient
magnitudes decrease as the number of nonevanescent coef-
ficients increase with increasing a. However, what appears
to remain constant is the shape (although not magnitude)
of the envelope of the field component distributions, sug-
gesting that in the limit of a → ∞, the field becomes
expressed by an infinite number of subfields weighted pri-
marily around particular values of α and corresponding
axicon angles ζ. Moreover, these principle values appear
to be the principal limited diffraction field components al-
ready analyzed recently in [16].

C. Comparison with Experimental and
Rayleigh-Sommerfeld Results

Fig. 8(a) shows the greyscale image of the transducer
field evaluated with a = 30R. Next to it in Fig. 8(b), we see
the excellent agreement with the experimental field result
of [5]. Fig. 8(c) then shows the Rayleigh-Sommerfeld field
computation without Fresnel approximation, which again
agrees very closely with the Fourier-Bessel calculation.
Finally, in Fig. 8(d), we show the Rayleigh-Sommerfeld
computation without Fresnel approximation, which suffers
from errors in the very nearfield. Notice that these errors

Fig. 7. Nonevanescent coefficient values Ai versus axicon angles ζi =
sin−1(αi/k) for a = R, a = 5R, a = 10R and wavenumber k =
10 471.98 m−1.

are absent in the Fourier-Bessel calculation. In addition
to its accuracy, the Fourier-Bessel algorithm ran 14.1 and
3844.3 times faster than the Rayleigh-Sommerfeld algo-
rithms with and without Fresnel approximations, respec-
tively (see Table II).

VI. Theory for Tuning

A. Computation Mechanism

The theory for tuning of annular arrays using Fourier-
Bessel series has already been outlined in [15] in the con-
text of tuning a Bessel beam on an equal area annular
array. Here, we first review it and then apply it more ex-
tensively than previously for a different type of array in
Section VII. The field f(r, z, t) in (7) may be separated
into the product of time component e−jωt and spatial com-
ponent f(r, z) in terms of the ring pressures qp = γp + jδp

by combining (7), (9), and (3) to obtain

f(r, z, t) = e−jωt · lim
a→∞

l(k,a)∑
i=1

J0

(xir

a

)
×

[
N∑

p=1

Ci,p · ejβiz · (γp + jδp)

]
= e−jωt · f(r, z) (12)
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Fig. 8. Field for quantized CW Bessel beam. a) Field calculated by Fourier-Bessel theory. b) Experimental field. c) Field calculated by
Rayleigh-Sommerfeld formula without Fresnel approximation. d) Field calculated by Rayleigh-Sommerfeld formula with Fresnel approxima-
tion.

TABLE II
Comparison of Relative Run Times for Different Field Simulation Methods.

Rayleigh-Sommerfeld Rayleigh-Sommerfeld
Simulation method Fourier-Bessel with Fresnel without Fresnel

Time (h:min:s) 00:00:28 00:06:35 29:54:00
Time (s) 28 395 107 640
Time (relative) 1 14.1 3844.3

The spatial field component f(r, z) postmultiplying e−jωt,
therefore, has complex form f(r, z) = f�(r, z) + jf�(r, z),
where f�(r, z) and f�(r, z) are the real and imaginary
components, respectively. From this, the field at all points
of interest r = ru, z = zv (u = 1 . . . nu and v = 1 . . . nv)
may be written as (13) (see next page) in which M�

i,p,v

and M�
i,p,v are the real and imaginary parts of the product

Mi,p,v = Ci,p · ejβizv , respectively. Eq. (13) then has block
form

F = MQ (14)

in which

Q = [γ1, δ1, . . . , γN , δN ]′ (15)

on the right-hand side is the vector containing the real
and imaginary parts of all N adjustable ring pressures

q1, . . . , qN . This vector has dimension Q = Q{2N, 1},
where the notation Q{rows, cols} indicates the number of
rows and columns, respectively.

We then aim to minimize the envelope of the differ-
ence in field intensity between the actual field vector
F = F{2nunv, 1} and some desired field vector D =
D{2nunv, 1} in a least squares sense by adjusting all com-
ponents γ1, δ1, . . . , γN , δN from the ring pressures in (3)
appropriately. To achieve this, first define the desired field
d(r, z, t) = e−jωt · d(r, z) as a product of time component
e−jωt and spatial component d(r, z). The real and imag-
inary spatial components d�(ru, zv), d�(ru, zv) may then
be written out at all points of interest (u = 1 . . . nu and
v = 1 . . . nv) in the same format as the vector F , i.e. (16)
(see next page) and the least squares minimization prob-
lem with respect to Q then reduces to the minimization of
the error sum S = [F −D]′[F −D]. Substituting F = MQ
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f�(r1, z1)
f�(r1, z1)

...
f�(ru, zv)
f�(ru, zv)

...
f�(rnu , znv )
f�(rnu , znv )




=




lim
a→∞

l(k,a)∑
i=1

J0

(x, r

a

) [
+M�

i,1,1,−M�
i,1,1, . . . ,+M�

i,N,1,−M�
i,N,1

+M�
i,1,1,+M�

i,1,1, . . . ,+M�
i,N,1,+M�

i,N,1

]
...

lim
a→∞

l(k,a)∑
i=1

J0

(xiru

a

)[
+M�

i,1,v,−M�
i,1,v, . . . ,+M�

i,N,v,−M�
i,N,v

+M�
i,1,v,+M�

i,1,v, . . . ,+M�
i,N,v,+M�

i,N,v

]
...

lim
a→∞

l(k,a)∑
i=1

J0

(xirnu

a

)[
+M�

i,1,nv
,−M�

i,1,nv
, . . . ,+M�

i,N,nv
,−M�

i,N,nv

+M�
i,1,nv

,+M�
i,1,nv

, . . . ,+M�
i,N,nv

,+M�
i,N,nv

]







γ1
δ1
...

γN

δN


 (13)

D =
[
d�(r1, z1), d�(r1, z1), . . . , d�(ru, zv), d�(ru, zv), . . . , d�(rnu , znv ), d�(rnu , znv)

]′
, (16)

from (14) and minimizing with respect to Q gives least
squares solution Q = Qls{2N, 1} as

Qls = [M ′M ]−1M ′ · D. (17)

Note that this tuning method has some similarities to
the previous limited diffraction design of [17], but pos-
sesses two major differences in approach and objective.
The first is that [17] considers a single value of α and then
combines weightings of Jn(α) for different Bessel orders n,
whereas this method considers multiple values of αi but
combines weightings of Jn(αi) for n = 0 only. The second
is that [17] derives weighting parameters on the assump-
tion that the resulting Bessel functions could be realized
perfectly in practice on the transducer surface, whereas
this method considers specifically the effects of quantiza-
tion on the transducer and derives a tuning scheme that
takes these restrictions into account.

B. Numerical Aspects

The vector dimensions F = F{2nunv, 1} and Q =
Q{2N, 1} cause the large matrix M premultiplying Q
to have dimension M = M{2nunv, 2N} and the inverse
[M ′M ]−1 in (17) must exist for the solution to be re-
alizable. Hence, M ′M = M ′M{2N, 2N} must have full
rank 2N , and this imposes a requirement of nunv ≥ N
to prevent M (and thereby M ′M) from being rank de-
ficient for dimensional reasons. In addition, consideration
needs to be given to spatial sampling rates. From (7), com-
ponent i of the sum propagates in the z direction as ejβiz

with wavelength 2π/βi for the nonevanescent components.
The shortest possible wavelength is, therefore, that corre-
sponding to the maximum possible nonevanescent value of
βi, namely βmax = k when αi = 0 in (6). This gives a
wavelength of 2π/k, which, to comply with the Shannon
sampling theorem, dictates a sampling interval in the z
direction of π/k or lower. In the radial direction r, the ap-
proximation J0(αir) ≈

√
2/παir ·cos(αir−π/4) from (10)

allows us to approximate the radial oscillations as a cosine

function of wavelength 2π/αi. The minimum wavelength
possible is then also 2π/k, corresponding to the maximum
nonevanescent value αi = k possible in (6). Therefore, this
also leads to a sampling interval of π/k or lower in the r
direction. Finally, we also need, in practice, to iterate for
different values of M for a → ∞, calculate Qls for each
value of a, and wait for the corresponding quantization
magnitudes |qp| and phases θp or time delays τp from (4)
to converge to within acceptable levels. (See Section VII
for a full numerical example).

VII. Examples of Tuning

For tuning examples, we consider the focusing of a
Gaussian beam with focal length F = 120 mm on the
given annular array. This is obtained initially without any
least squares tuning by quantizing both the ring ampli-
tudes |qp| and phases θp (3) over each annulus according
to

qp = e−r2
p/σ2 · ejk(F−

√
F 2+r2

p) = |qp| ejθp , (18)

which is a discretized version of the Gaussian surface
pressure expression given in [5] in which r1 = 0, rp =
(r−

p + r+
p )/2, (p = 2 . . . 10), σ = 15 mm, F = 120 mm,

and k = 10.4798 mm−1. Eq. (18) gives amplitudes and
phases as per rows 1 and 2 in Table III, for which all Ai

coefficients are imaginary, as all qp are imaginary.

A. Experimental Gaussian Field

The Fourier-Bessel field calculation with a = 30R for
(18) leads to the field in Fig. 9(a) over the intervals
0 ≤ r ≤ 24 mm and 5 ≤ z ≤ 210 mm. The result demon-
strates a focus around z = 120 mm as expected, along with
some nearfield diffraction in the region of z < 100 mm. We
now compare this with the experimental result obtained
previously in [5], whereby the array was quantized with the
same discrete magnitudes |qp| = e−r2

p/σ2
as per (18) but, in
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TABLE III
Quantization Amplitudes and Phases for Panels in Fig. 9(a) and 10(a and b).

Ring Number
p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10

|qp| Fig. 9(a) 1.000 0.953 0.857 0.726 0.578 0.434 0.306 0.203 0.127 0.079
θp/π Fig. 9(a) 0 −0.151 −0.482 −1.003 −1.711 −2.607 −3.689 −4.955 −6.404 −7.910
|qp| Fig. 10(a) 1.001 0.956 0.860 0.726 0.578 0.434 0.306 0.204 0.127 0.079
θp/π Fig. 10(a) −0.001 −0.151 −0.482 0.998 0.289 −0.607 0.311 −0.955 −0.404 0.090
Unwrapped 0.998−2 0.289−2 −0.607−2 0.311−4 −0.955−4 −0.404−6 0.090−8
θp/π − 2 ∗ int = −1.002 = −1.711 = −2.607 = −3.689 = −4.955 = −6.404 = −7.910
|qp| Fig. 10(b) 1.007 0.959 0.862 0.726 0.578 0.434 0.305 0.202 0.126 0.077
θp/π Fig. 10(b) −0.001 −0.152 −0.482 0.998 0.289 −0.607 0.311 −0.955 −0.404 0.092
Unwrapped 0.998−2 0.289−2 −0.607−2 0.311−4 −0.955−4 −0.404−6 0.092−8
θp/π − 2 ∗ int = −1.002 = −1.711 = −2.607 = −3.689 = −4.955 = −6.404 = −7.908

Fig. 9. Tuning results for a CW focused Gaussian beam. a) Focused Gaussian beam field calculated with Fourier-Bessel theory. b) Experi-
mental tuning using an acoustic lens. c) Rayleigh-Sommerfeld verification of (a). d) Rayleigh-Sommerfeld verification of (b).

practice, with continuous phases θ(r) = k(F −
√

F 2 + r2)
obtained by placing an acoustic lens across the surface
of the transducer (see [5] for details). The resulting ex-
perimental field is given in Fig. 9(b), demonstrating an
almost identical focus to Fig. 9(a), but this time without
the diffraction for z < 100 mm. This difference appears to
be due to the difference between the quantized phases in
Fig. 9(a) and the continuous phases in Fig. 9(b). To verify
that this is the case as opposed to any simulation error
in the Fourier-Bessel method for the case of complex ring
pressures, we then also simulate the fields for both Fig. 9(a
and b) using the Rayleigh-Sommerfeld diffraction formula.
The results are given in Fig. 9(c and d), respectively,

demonstrating that both Fig. 9(a and b) are indeed consis-
tent with the independent Rayleigh-Sommerfeld method;
therefore, the Fourier-Bessel simulation method for com-
plex ring pressures still holds good.

B. Verification of Tuning Algorithm Using Gaussian Field

Therefore, with full confidence in the Fourier-Bessel
field evaluation method and taking Fig. 9(a) as the bench-
mark for what we know may be achieved given the con-
straints of discretized quantization phases, we now con-
sider how the array could be tuned using that desired field
but in the absence of the underlying (18). First, we take
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Fig. 10. Tuning results for a CW focused Gaussian beam. (a) Tuning result using the whole field Fig. 9(a). b) Tuning result using a 48-mm
vertical line of the field in Fig. 9(a) through the focal distance z = F = 120 mm. c) Same as (b) but with vertical line of 20 mm. d) Same
as (b) but with vertical line of 15 mm.

the entire field in Fig. 9(a) to construct the desired field
vector D in (16), (17), and apply the tuning algorithm
of Section VI with lateral (r) and axial (z) resolutions of
0.3 mm each. (Notice that these comply with the required
sampling intervals of π/k = 0.30 mm or lower derived in
Section VI. If the tuning theory is correct, we should then
expect to retrieve the exact quantization magnitudes and
phases that generated this field, as the tuning is recreat-
ing a field that we already know. In practice, we do indeed
find this to be the case, with the least squares ring pres-
sures and phases (rows 3 and 4 of Table III) being virtually
identical to the original phases (rows 1 and 2 of Table III).
The field for the subsequent least squares ring pressures is
given in Fig. 10(a); compare this with the original given
field in Fig. 9(a). Hence, we have now established that
both the field calculation and tuning methods are valid
and accurate.

C. Tuning Using Reduced Gaussian Field

A drawback, however, is that the tuning algorithm takes
a long time to run when using the entire field data (approx-
imately 6 h on a 600-MHz Pentium III PC programmed
in C). So we now investigate how well it performs when
substituting a much smaller slice of field data for the de-
sired vector D. To do this, take only a single line of the
field data sampled across the 48-mm radial cross-section of
interest (0 ≤ r ≤ 24 mm) in the plots at the focal distance

z = 120 mm. The computation time is then reduced to
only a few minutes while the ring pressures are still found
to be retrieved satisfactorily [see rows 5 and 6 of Table III
and the corresponding field plot in Fig. 10(b). We then at-
tempt to reduce the data set even further by sampling first
only the first 20 mm (0 ≤ r ≤ 10 mm) and second only
the first 15 mm (0 ≤ r ≤ 7.5 mm) symmetrically around
the central axis r = 0 at z = 120 mm from Fig. 9(a) [see
Fig. 10(c and d), respectively]. Here, we see a degradation
in the desired field because of the appearance of unwanted
sidelobes on either side of the central focal zone. The rea-
son for this is that, in specifying sampling regions of only
0 ≤ r ≤ 10 mm and 0 ≤ r ≤ 7.5 mm, respectively, the al-
gorithm is not concerned with what happens beyond these
boundaries, and, therefore, the field is not constrained in
any way in those areas. This brings to light the point that
one must be careful to specify a large enough area of inter-
est for the least squares algorithm, if one is to be sure of
obtaining a satisfactory field in the entire region of prac-
tical usage. Clearly, on the one hand, one is interested in
keeping the algorithm data to a minimum from the point
of view of computation time, but, on the other hand, one
must ensure enough data to avoid degradation of the field
in other areas that may still be of interest. A suitable global
design to balance these objectives has not yet been inves-
tigated, and some degree of trial and error is needed at
present to arrive at a satisfactory conclusion.
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Fig. 11. Tuning results for simple desired fields. a) Tuning using a vertical line through the focus at z = 120 mm. The line has a value of
zero except in the central portion of a height of 2.54 mm, whose value is ejkz (see upper left-hand corner of the figure). b) Tuning using the
same line as in (a) except that the width is 10 mm centered at z = 120 mm. c) The same as (a) except that the width is 24.4 mm. d) The
same as (a) with width of 240 mm.

D. Tuning Using Generalized Field

Finally, we now also assume that the pre-computed
discretized Gaussian field of Fig. 9(a) is not available in
practice and consider the more practical problem of tun-
ing based on a simpler design rule. For this, we design a
field with a stepwise amplitude distribution based around
r = 0, z = 120 mm, in the form of a vertical bar (with
respect to the field plots) as shown in the upper left-hand
corner of Fig. 11. The center of the bar is located at the
point r = 0, z = 120 mm defined as the focus of the
desired field and the total length (height) of the bar is
48 mm (0 ≤ r ≤ 24 mm) as per the tuning example of
Fig. 10(b) previously. The height of the central section
0 ≤ r ≤ 1.27 mm with distribution ejkz is 2.54 mm (full-
width at half-maximum lateral resolution GRL in [5]),
and the width of bar is changeable while the field out-
side the range 0 ≤ r ≤ 1.27 mm is defined as zero for
1.27 mm < r ≤ 24 mm. Fig. 11(a) is then the tuning
result for a single vertical line sampled at z = 120 mm,
and Fig. 11(b and c) are for bars of widths 10 mm (b)
and 24.4 mm (c) (depth of field GFzmax in [5]). These
represent a gradual lengthening of the desired depth of
focus between each plot, with this being extended to a to-
tal width of 240 mm (double the focal length) in (d). In
this latter case, we observe that the extension of the fo-
cal zone is achieved at the cost of a significant increase

in both the width of the mainlobe and the magnitude of
supporting sidelobe levels. See Table IV for quantization
amplitudes and phases corresponding to the four panels
in Fig. 11. Finally, Fig. 12 shows the convergence of least
squares quantization magnitudes |qp| and phases θp as a
function of increasing aperture ratio a/R for the tuning
example of Fig. 11(a).

VIII. Conclusions and Further Work

We have discussed a method for computing and tun-
ing the linear lossless field of flat annular arrays using 1-D
Fourier-Bessel series. The series corresponds to a set of
Bessel beams propagating into the medium, which, in the
limit, provides a linear mapping between the ring pres-
sures on the transducer surface and the field at any point
in space. The Fourier-Bessel field calculation method was
found to be both quicker and more accurate close to the
transducer surface than the Rayleigh-Sommerfeld method
with Fresnel approximation when applied to a 10-ring an-
nular array operating at 2.5 MHz in water. The tuning
method allowed us to tune the field in different manners
by defining different desired fields. However, some degree
of trial and error was found to be necessary when employ-
ing different design criteria, and this is an area that could
benefit from further investigation. It may also be that op-
timization schemes other than least squares could provide
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TABLE IV
Quantization Amplitudes and Phases for Panels in Fig. 11.

Ring Number
p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10

|qp| / |q1| Fig. 11(a) 1.000 0.984 0.982 0.979 0.990 1.017 1.034 0.993 0.861 0.682
θp/π Fig. 11(a) 0.488 0.341 0.012 −0.506 0.789 −0.109 0.797 −0.490 0.052 0.479
|qp| / |q1| Fig. 11(b) 1.000 0.986 0.989 0.993 1.001 0.995 0.937 0.787 0.539 0.225
θp/π Fig. 11(b) 0.485 0.343 0.012 −0.508 0.781 −0.126 0.774 −0.509 0.053 0.521
|qp| / |q1| Fig. 11.(c) 1.000 1.005 1.018 1.025 0.998 0.882 0.636 0.275 0.127 0.503
θp/π Fig. 11(c) 0.487 0.346 0.012 −0.517 0.757 −0.167 0.720 −0.553 0.845 −0.612
|qp| / |q1| Fig. 11(d) 1.000 0.355 0.191 0.127 0.092 0.072 0.058 0.050 0.040 0.048
θp/π Fig. 11(d) 0.290 0.174 −0.035 −0.319 −0.682 0.868 0.329 −0.230 0.972 0.320

Fig. 12. Convergence of quantization magnitudes |qp| and phases θp

as a function of aperture ratio a/R for tuning example in Fig. 11(b).

benefits. There remain also several other extensions to the
current method that require investigation. First, exten-
sion of the analysis to pulse wave (PW) fields both for
field computation and tuning. Second, the current anal-
ysis is limited to annular arrays and its development of
non-annular arrays both in CW and PW cases is of inter-
est for more widespread application. This will require the
use of 2-D Fourier-Bessel series, which are capable of mod-
elling quantization profiles and fields that are non-circular-
symmetric around the propagation axis. Some initial work
has already begun on this, but there are many computa-
tional aspects still to be investigated; these are partly due
to the increased number of transducer elements in such
arrays and partly due to the fact that 2-D Fourier-Bessel
series require the computation of 2-D Fourier-Bessel coeffi-
cients. In principle, the analysis for both field computation
and tuning of 2-D series follow the same general structure
as in the 1-D case. However, it may be that the increased
numerical complexity of such schemes provide difficulty in
implementation because of computational time, memory,
or numerical stability requirements. An extension of all of

these methods to a suitable model for lossy media is also
of interest.
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