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A one-dimensional~1D! Fourier–Bessel series method for computing and tuning~beamforming! the
linear lossless field of flat pulsed wave annular arrays is developed and supported with both
numerical simulation and experimental verification. The technique represents a new method for
modeling and tuning the propagated field by linking the quantized surface pressure profile to a
known set of limited diffraction Bessel beams propagating into the medium. This enables derivation
of an analytic expression for the field at any point in space and time in terms of the transducer
surface pressure profile. Tuning of the field then also follows by formulating a least-squares design
for the transducer surface pressure with respect to a given desired field in space and time. Simulated
and experimental results for both field computation and tuning are presented in the context of a
10-ring annular array operating at a central frequency of 2.5 MHz in water. ©2003 Acoustical
Society of America.@DOI: 10.1121/1.1560211#
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I. INTRODUCTION

In this article we describe a method for computing a
tuning linear lossless fields from flat pulsed wave~PW! an-
nular arrays by using a one-dimensional~1D! Fourier–Bessel
series.1,2 The use of this series allows the propagated field
be described as a polychromatic set of nondiffractingJ0

Bessel beams3,4 giving a linear mapping between the spat
quantization levels on the transducer surface and the pr
gated field at any point in space. The technique leads
new method for both the tuning and fast computation of P
annular fields.

Bessel beams are the components of polychromati
waves5 and have been studied extensively in recent years5–13

Theoretically, nondiffracting beams such as Bessel be
and X waves can propagate superluminally~at a speed
c/cosz wherec is the speed of sound andz is the Axicon
angle14,15!, to an infinite distance without spreading if the
are produced with an infinite aperture and energy. In pr
tice, nearly exact X waves can still be realized with eith
broadband or band-limited radiators over deep depth of fi5

and for this reason, these and other related beams7,9,10,16–21

have been studied extensively for medical imaging,22–24 tis-
sue property identification,25 blood flow velocity vector
measurement,26 nondestructive evaluation of materials,27

communications,28 electromagnetics,29 and optics.4,30

The present study draws on previous knowledge
Bessel beams and X waves to formulate a method for b
computing and tuning~beamforming! the propagated field by

a!Electronic mail: pdf@oersted.dtu.dk
b!Electronic mail: jcheng@eng.utoledo.edu
c!Electronic mail: jilu@eng.utoledo.edu
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using a set of Bessel beam basis functions. In Refs. 31
32 these were applied across the transducer surface to
compose the emitted field into a known set of limited diffra
tion Bessel beams. In this article the analysis is extende
solve for the emitted field itself as a weighted set of ex
Bessel solutions to the wave equation and study the me
for polychromatic~pulsed! waves. We show that the metho
correlates well with both previous experimental results6 and
simulations based on the Rayleigh–Sommerfeld diffract
formula. The method also allows us to tune the PW field i
least-squares sense with respect to a given desired PW
distribution by choosing the transducer surface quantiza
levels accordingly.

In Sec. II model definitions for the governing wav
equation and structure of PW annular arrays are introduc
Section III then explains the application and interpretation
1D Fourier–Bessel series and Sec. IV develops a method
computing the propagated field using these series. Sectio
gives numerical examples of the field computation for
waves and focused Gaussian pulses, comparing them al
experimental data and a classical~Rayleigh–Sommerfeld!
field calculation method. In Sec. VI a least-squares field t
ing design is given, followed in Sec. VII by numerical e
amples for X waves and focused Gaussian pulses. Fin
Sec. VIII summarizes, draws conclusions, and suggests
ther work.

II. MODEL DEFINITIONS

A. Propagation model

Annular arrays have circular symmetry and correspo
ingly the resulting propagation in linear free space is dicta
by the circular-symmetric wave equation
13(5)/2412/12/$19.00 © 2003 Acoustical Society of America
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where f (r ,z,t) is the scalar field value,r is the radial dis-
tance from the cylindrical centerline,z is the outward propa-
gation distance perpendicular to the transducer surface~sit-
ting in the z50 plane and centered aroundr 50), andc is
the speed of sound~assumed real!. This equation has an in
finite number of Bessel beam solutions4,5 of the form

f ~r ,z,t,v!5J0~ar !ej bze2 j vt,
~2!

b5Ak22a2: k5v/c,

where k is the wave number~real! and a any real non-
negative value (a>0).

Notice that fora.k, the axial parameterb5Ak22a2

becomes imaginary and in this casef (r ,z,t,v) decays expo-
nentially rapidly in thez direction. In particular, it become
an evanescent wave for large enoughb and this will become
a key property in the development of the field calculatio
The other important property is that atz50 the field is
f (r ,0,t,v)5J0(ar )•e2 j vt, and therefore a pressure profi
J0(ar )e2 j vt at z50 necessarily gives rise to a propagati
Bessel beam~2!. Therefore, if it is possible to describe th
field over an annular transducer’s surface as a sum of te
of the typef (r ,0,t,v)5J0(ar )e2 j vt with different a andb
values, the propagating field in linear media becomes
summation of each individual field given by Eq.~2!. And
since Eq.~2! is an equation not involving costly numeric
computations such as integration, this approach demonst
potential for fast field computation.

B. PW annular arrays

We consider flat annularN-ring PW arrays of radiusR
with surface pressureq(r ,t), which are quantized spatiall
in the radialr direction due to their ring structure. This re
sults in N sequentially discretized pressure profilesqp(t),
wherep51,...,N is the ring number andp51 for the inner
ring with p5N for the outer ring. Time and frequency do
main representationsqp(t) and Qp(v) for each ringp are
linked formally by the continuous Fourier transform pair

Qp~v!5E
2`

`

qp~ t !ej vtdt

⇔qp~ t ! 5
1

2p E
2`

`

Qp~v!e2 j vtdv, ~3!

although we assume here a sampled system with fixed p
repeat frequency such that the system is represented b
discrete Fourier sum

qp~ td!5(
s50

nv

Qp~vs!e
2 j vstd: vs5s2p f 0

~4!
Qp~vs!5FFT$qp~ td!%⇔qp~ td!5IFFT$Qp~vs!%,

wherenv is the number of nonzero Fourier frequencies,f 0

denotes fundamental frequency in hertz, andtd denotes a
discrete sampling point in time. The notation FFT$qp(td)%
denotes taking the fast fourier transform~FFT! of qp(t) and
J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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IFFT$Qp(vs)% denotes the inverse fast fourier transfor
~IFFT! of Qp(vs). Hence the entire array of allN rings may
then be represented as

F q1~ td!

A
qN~ td!

G5(
s50

nv F Q1~vs!

A
QN~vs!

Ge2 j vstd ~5!

in which each entryQp(vs) for p51,...,N is generally com-
plex

Qp~vs!5gp~vs!1 j dp~vs! ~6!

with gp(vs) anddp(vs) being the real and imaginary par
of Qp(vs), respectively. This corresponds to each ring em
ting pressure Qp(vs)e

2 j vstd5uQp(vs)uej up(vs)e2 j vstd

5uQp(vs)ue2 j vs(td2tp(vs)), where uQp(vs)u, up(vs), and
tp(vs) are the respective ring magnitudes, phases, and
delays obtained from Eq.~6! as

uQp~vs!u5Agp~vs!
21dp~vs!

2,

up~vs!52 j ln~Qp~vs!/uQp~vs!u!, ~7!

tp~vs!5up~vs!/vs .

III. USE OF 1D FOURIER–BESSEL SERIES

A. Application of infinite series

A 1D Fourier-Bessel series1,2 may be used to model th
quantized surface pressureq(r ,vs) at each frequencyvs in
Eq. ~4! by an infinite set of known basis Bessel functions

Q~r ,vs!5(
i 51

`

Ai~vs!J0~a i r !,

a i5xi /a: J0~xi !50, ~8!

Ai~vs!5
2

a2J1
2~xi !

E
0

a

q~r ,vs!rJ0~a i r !dr,

whereJ0(•) is the Bessel function of the first kind of orde
zero andxi in Eq. ~8! are the known infinite set of~real!
monotonically increasing positive solutions toJ0(xi)50.
This series applies over the range 0<r<a for any choice of
modeling aperturea, subject to Q(a,vs)50 due to
J0(a ia)5J0(xi)50 for all i . ~Note also that for ease o
discussion, we use the termaperture here to refer to the
modeling radiusa rather the full diameter 2a.! For annular
arrays, we may therefore select any valuea.R since the
surface pressureQ(r ,vs) is considered to be zero forr>R
in the transducer planez50.

The spatial profileQ(r ,vs) for a givenvs is stepwise
constant Q(r ,vs)5Qp(vs) for the N rings p51,...,N
present over the radial range 0<r<R. Beyond this range it
becomesQ(r ,vs)50 for R,r<a and together these two
consecutive ranges allowAi(vs) in Eq. ~8! to be evaluated
analytically as

Ai~vs!5 (
p51

N

Ci ,pQp~vs!,

~9!
Ci ,p52@r p

1J1~a i r p
1!2r p

2J1~a i r p
2!#/axiJ1

2~xi !,
2413Fox et al.: Fourier–Bessel field calculation and tuning
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whereJ1(•) is the first-order Bessel function of the first kin
andr p

2 , r p
1 are inner and outer radii of ringp, respectively.

@Hence r 1
250 ~transducer center! and r N

15R ~transducer
outer edge! by definition, with the kerf between successi
rings beingr p

22r p21
1 for p52,...,N.] Note also that the

quantitiesAi(vs) are complex sinceQp(vs) in Eqs.~4!–~6!
are complex and onlyCi ,p in Eq. ~9! are real. See Ref. 13 fo
a more detailed numerical insight from the equivalent ter
in the cw case.

Returning then to Eq.~8!, the result is that the annula
transducer pressure has now become equivalent to the
nite sum of weighted Bessel functionsQ(r ,vs). Hence,
when multiplied through by their common temporal comp
nent e2 j vst, the transducer pressure becom
Q(r ,vs)e

2 j vst5( i 51
` Ai(vs)J0(a i r )e2 j vst in which each

weighted componentJ0(a i r )e2 j vst is a Bessel beam solu
tion ~2! to the wave equation~1! at z50. Correspondingly,
an infinite set of known Bessel beams propagate into
medium as

f ~r ,z,t,vs!5(
i 51

`

Ai~vs!J0~a i r !•ej b i (vs)ze2 j vst,

~10!
b i~vs!5Aks

22a i
2: ks5vs /c,

whereAi(vs)•J0(a i r )ej b i (vs)ze2 j vst is the full Bessel solu-
tion for zÞ0 to Eq.~1!, ks5vs /c is the wave number, and
a i , b i(vs) are the propagation parameters in the radial a
axial directionsr , z, respectively.

B. Truncation to finite series

Now consider the behavior ofb i(vs) in Eq. ~10! as the
coefficient index i changes. The scaling parametersa i

5xi /a in Eq. ~8! increase monotonically with indexi for a
given value ofa since the rootsxi'p i 2p/4 increase mono-
tonically with i by definition. Hence a change in propagati
characteristics occurs for the distinct casesa i<ks and a i

.ks since the wave numberks is real and henceb i(vs) is
purely real whena i<ks but purely imaginary whena i

.ks . For the case of realb i(vs), all the corresponding com
ponents in Eq.~10! propagate to infinity due touej b i (vs)zu
51 even asz→`. However, for the case of imaginar
b i(vs), the corresponding components usually all beco
evanescent sincee2ub i (vs)uz!1 even for very small values o
z in typical ultrasonic applications. Notice also from the de
nition of b i(vs) in Eq. ~10! that the evanescent term
e2ub i (vs)uz decay more and more rapidly with respect toz as
i increases sinceub i(vs)u increases monotonically withi for
all valuesa i.ks . This means that even if a certain numb
of a i.ks terms are retained for a given application,
higher terms in the series may always be neglected by d
nition. ~See Ref. 13 for a more detailed numerical discuss
in the cw case.! Therefore only the nonevanescent bea
components are considered for most practical purposes,
denoting l (ks ,a) as the appropriate number of no
negligible components for a given application, the infin
sum in Eq.~10! becomes replaced by the finite limited di
fraction sum
2414 J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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f ~r ,z,t,vs!5 (
i 51

l (ks ,a)

Ai~vs!J0~a i r !ej b i (vs)ze2 j vst. ~11!

This truncation limitl (ks ,a) may also be estimated analyt
cally by replacingk with ks in the expression forl (k,a)
derived previously in Refs. 13 and 32 to obtain

l ~ks ,a!'ksa/p11/4, ~12!

which is proportional to wave numberks and modeling ap-
erturea, but independent of any particular transducer pr
sureQ(r ,vs).

IV. THEORY FOR FIELD COMPUTATION

A. Field computation theory based on Fourier–Bessel
series

When implemented over an infinite aperture (a→`),
the entire transducer plane atz50 from r 50 to r 5` at z
50 becomes modeled by the Fourier–Bessel series. T
the propagating field at timetd is given by the infinite aper-
ture implementation of Eq.~11!, namely

f ~r ,z,td ,vs!5F~r ,z,vs!e
2 j vstd,

~13!

F~r ,z,vs!5 lim
a→`

(
i 51

l (ks ,a)

J0S xir

a Dej b i (vs)z

3F (
p51

N

Ci ,p~gp~vs!1 j dp~vs!!G ,

and the complex termsF(r ,z,vs) are obtained from Eqs
~11!, ~9!, and ~6!. Notice from Eq. ~13! that the terms
F(r ,z,vs) are Fourier coefficients mapping the transduc
surface pressuresQp(vs)5gp(vs)1 j dp(vs) to the field
f (r ,z,td ,vs) at arbitrary positionsr , z. Hence defining the
total field f (r ,z,td) as the sum(s50

nv f (r ,z,td ,vs) of all sub-
fields f (r ,z,td ,vs) in Eq. ~13! gives

f ~r ,z,td!5(
s50

nv

F~r ,z,vs!e
2 j vstd

⇒ f ~r ,z,td!5IFFT$F~r ,z,vs!%, ~14!

which is to say that the fieldf (r ,z,td) may now, in principle,
be evaluated rapidly as an IFFT operation for any point
space and from any set of transducer surface press
Qp(vs).

However, a numerical problem appears at this point w
regard to implementation. Equation~12! indicates l (ks ,a)
→` asa→`, and hence an infinite number of terms need
be summed in Eq.~13! to evaluateF(r ,z,vs). This occurs as
the differencea i2a i 21'p/a between successivea i values
in Eq. ~8! decreases asa increases, and hence more and mo
a i terms appear in the nonevanescent range 0<a i<ks asa
increases. Clearly it is impossible to compute an infin
number of terms in practice, but the following scheme m
be implemented to circumvent the problem. First replace
infinite limit a→` in Eq. ~13! with a smaller fixed value of
a, such asa510R. Obtain an estimate ofF(r ,z,vs) from
Eq. ~13! based ona510R and then increasea to a515R.
Obtain a revised estimate ofF(r ,z,vs) based ona515R and
Fox et al.: Fourier–Bessel field calculation and tuning
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compare it to the estimate obtained fora510R. If signifi-
cantly different, increasea to a520R and compare estimate
for a520R with a515R. Continue to increasea until esti-
mates forF(r ,z,vs) based on successive values ofa effec-
tively converge to constant values. Take the converged e
mate ofF(r ,z,vs) as the final practical approximation to th
limiting casea→` and use this value for insertion into th
IFFT operation of Eq.~14!. See Ref. 13 for a detailed illus
tration of this convergence method at a given propaga
frequency.

In practice we have found that convergence typica
occurs at relatively modest values ofa, such asa520R.
Thereforea510R, a515R, a520R has been adopted as th
default convergence test sequence for the numerical
amples given later in this paper. The convergence test it
was defined as the value ofa for which the change in mag
nitude uF(r ,z,vs)u between latest and previous value ofa
dropped to within 0.1% of the magnitudeuF(r ,z,vs)u for the
previous value ofa. The field calculation results obtaine
then proved both fast and accurate when compared ag
the Rayleigh–Sommerfeld field calculation technique.~See
Sec. V for examples and discussion.!

B. Algorithm for field calculation

The field calculation algorithm resulting from Sec
II–IV may now be summarized as follows:

~1! If not known a priori, obtain the Fourier coefficien
Qp(vs)5FFT$qp(td)% for p51,...,N from Eq. ~4!.

~2! Set frequency index tos50.
~3! Select initial modeling aperturea ~e.g., a510R, a

515R, a520R, etc.!.
~4! Estimate the corresponding number of nonevanes

termsl (ks ,a) from Eq. ~12!.
~5! Evaluate coefficientsCi ,p for i 51,...,l (ks ,a) from Eq.

~9!.
~6! EvaluateF(r ,z,vs) based on Eq.~13! but with the infi-

nite limit a→` removed.
~7! Increasei beyondi 5 l (ks ,a) to ensure that evanescen

occurs forz regions of interest whena i.k @i.e., check
for any significant changes inF(r ,z,vs)]. Stop increas-
ing i when no significant changes are detected.

~8! Compare current evaluation ofF(r ,z,vs) with that for
previous value ofa. If not converged to within satisfac
tory limit, increase the value ofa and go back to step
~4!.

~9! If s,nv , increases by 1 and go back to step~3!.
~10! Evaluate the field asf (r ,z,td)5IFFT$F(r ,z,vs)% from

Eq. ~14! based on all coefficientsF(r ,z,vs).

V. EXAMPLES OF FIELD COMPUTATION

A. Transducer geometry and simulated transducer
data

For numerical examples of both field computation in th
section and tuning in Sec. VII, we consider the PZT ceram
polymer compositeJ0 Bessel transducer of Lu and Greenle
described in Ref. 6. The experimental setup for the exp
ment results quoted later in this paper are also descr
J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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therein. The transducer is anN510-ring Bessel design trans
ducer whose ring edges are located nominally at the firs
zeros ofJ0(ar ), where a51202.45 m21. In practice this
transducer also has a kerf of approximately 0.2 mm, s
that in terms of the notation of Sec. II B,r 1

250, r 1
15x1 /a

2kerf/2, r 2
25x1 /a1kerf/2, and so on. The outer radius

also truncated from the nominalR525.48 mm to R
525 mm in practice, and operating conditions are a cen
frequency of f c52.5 MHz (vc515.71 Mrad s21) in water
at speed of soundc51500 m s21 giving central wave num-
ber kc510,471.98 m21. In addition, the transfer function o
the transducer is modeled as a Blackman windowB(vs):

B~vs!50.4220.5 cos~pvs /vc!

10.08 cos~2pvs /vc!: 0<vs<2vc ,
~15!

B~vs!50: vs.2vc ,

which exhibits zero phase shift for allvs , with B(0)50 and
B(vs) peaking at the central frequencyf c52.5 MHz and
possessing a26 dB bandwidth of approximately 0.81f c .
See Ref. 6 for further discussion of experimental setup
transducer characteristics. For PW studies, we assume a
poral excitation burst weighting functiong(t) given by

g~ td!5e2td
2/t0

2
sin~2p f ctd!, ~16!

where t050.4 ms, the burst lasts approximately one and
half cycles, and the total observation time is 20.48ms. This
gives fundamental frequencyf 051/20.48ms548.828 kHz
and with a maximum propagated frequency of 5 MHz due
Eq. ~15!, the Shannon sampling frequency is 10 MHz.
practice we implement a 100 MHz sampling rate, cor
sponding to sampling interval of 0.01ms and a total numbe
of 20485211 samples (nv5102421 frequencies! for the
FFT and IFFT operations. The excitation burst weighti
g(td) is then represented by the equivalent Fourier sum

g~ td!5(
s50

nv

G~vs!e
2 j vstd⇒G~vs!5FFT$g~ td!%. ~17!

Finally we define also the underlying driving functionxp(td)
similarly as

xp~ td!5(
s50

nv

Xp~vs!e
2 j vstd⇒Xp~vs!5FFT$xp~ td!%,

~18!

wherexp(td) represents the user-defined driving function f
each ringp: in our case we shall be considering X waves a
focused Gaussian beams as these driving functions. Link
togetherXp(vs), G(vs), andB(vs) in series from Eqs.~18!,
~17!, and~15! then gives the final transmission quantizati
valuesQp(vs) andqp(t) as

Qp~vs!5Xp~vs!G~vs!B~vs!

⇒qp~ t !5IFFT$Xp~vs!G~vs!B~vs!%, ~19!

which allows the generation of eitherQp(vs) or qp(td) in
Eq. ~4! corresponding to any desired driving functionxp(td).
In the remainder of this section we compare the results of
Fourier–Bessel field calculation with both the Rayleigh
2415Fox et al.: Fourier–Bessel field calculation and tuning
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FIG. 1. Simulated fields of a zero-order band-limited
wave with Fourier–Bessel method at distances:~a! z
585 mm, ~b! z5170 mm, ~c! z5255 mm, and~d! z
5340 mm, respectively, away from the surface of
50-mm-diam annular array. A stepwise X wave apertu
weighting and a broadband pulse drive of the arr
were assumed. The transmitting transfer function of t
array was assumed to be the Blackman window fun
tion peaked at 2.5 MHz and with26 dB bandwidth
around 0.81f c . Parametersa0 and z are 0.05 mm and
4°, respectively.
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Sommerfeld field calculation and the experimentally m
sured field given in Ref. 33 for both X waves and focus
Gaussian pulses. In Sec. VII we demonstrate tuning of th
two types of fields with the same transducer.

B. Simulated and experimental field results

For the purposes of generating simulation data, we t
qp(td)5IFFT$Xp(vs)G(vs)B(vs)% in Eq. ~19! as the start-
ing points from which to apply both the Fourier–Bessel~FB!
field calculation algorithm of Sec. IV B and, for compariso
verification purposes, the more classical Rayleig
Sommerfeld~RS! field calculation method. The driving func
tion xp(td) for a ~zero order! X wave5,6 at z50 on the
transducer surface has frequency domain representation

Xp~vs!5~2pa0 /c!e2a0vs /cJ0~r pvs /c sinz!, ~20!

where a050.05 mm, z54°, r 150, r p5(r p
21r p

1)/2, (p
52¯10) andc51500 ms21. The focused Gaussian bea
2416 J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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driving functionxp(td) has frequency domain representati

Xp~vs!5e2r p
2/s2

ej •vs /c•(F2AF21r p
2), ~21!

where s515 mm and the focusF is located at F
5120 mm, with the full-width-at-half-maximum being 2
mm.

1. X wave field

Figure 1 shows the FB calculated field of a simulated
wave, whereXp(vs) is defined as per Eq.~20!. The FB al-
gorithm converged for all values ata520R and the field is
shown at the four distances,~a! z585 mm, ~b! z
5170 mm,~c! z5255 mm,~d! z5340 mm. In all four pan-
els, the horizontal axis represents time whilst the verti
axis represents the radial position away from the cente
the transducer. Figure 2 then shows the RS field calcula
of the same simulated X wave as per Fig. 1. The FB and
plots are virtually identical, and this parallel is offered as
1,
–

a-
in
FIG. 2. The images are the same as those in Fig.
except that they are produced with the Rayleigh
Sommerfeld diffraction formula. The layout and the p
rameters used in simulation are the same as those
Fig. 1.
Fox et al.: Fourier–Bessel field calculation and tuning
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FIG. 3. Experimental results that correspond to t
simulations in Figs. 1 and 2. A 10-element, 50-mm d
ameter, 2.5MHz central frequency, PZT ceram
polymer compositeJ0 Bessel transducer was used.
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indicator of the F-B algorithm’s accuracy since the R-S
gorithm is widely accepted as a reliable method for fie
calculation. Figure 3 shows actual experimental results
the Bessel transducer of Ref. 6, which match the predic
simulated X wave fields given previously in Figs. 1 and
See Ref. 33 for details of experimental setup. A high leve
agreement between theory and practice is observed. No
also that the FB algorithm is applicable right up to and
cluding the transducer surface itself since Eq.~13! applies for
all z>0, whereas the RS algorithm is not applicable close
the transducer surface.

When programmed in C under Linux on a Pentium
600 MHz PC with 128 M Bytes of RAM, the FB algorithm
took approximately 1 min and the RS algorithm appro
mately 10 h. However, a study of runtimes compared w
faster computational techniques such as the impulse resp
method34–39has not yet been conducted at this point in tim
J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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2. Gaussian field

Figure 4 shows FB field calculation for the simulate
focused Gaussian pulse, whereXp(vs) is given by Eq.~21!
and plots are shown for~a! z550 mm, ~b! z5120 mm, ~c!
z5150 mm, ~d! z5216 mm. Figure 5 then gives the R
field calculation for the same pulse, again showing a cl
correlation between the FB and RS simulation methods.
nally, Fig. 6 shows experimental results except that in
experimental test of Ref. 6 the transducer had an acou
lens added. This supplied a continuous phase shift acros
transducer surface rather than the discretized phase shift
sumed in the simulation. Therefore some differences
tween Fig. 6 and Figs. 4 and 5 are expected. This is e
denced in the differences observed for the near field and
field panels~a! and ~d! between the respective figures, a
lse

d a
and
e

e

FIG. 4. Simulated fields of a focused Gaussian pu
with Fourier–Bessel method at distances:~a! z
550 mm, ~b! z5120 mm, ~c! z5150 mm, and~d! z
5216 mm. A stepwise Gaussian aperture shading an
stepwise phase was assumed. The broadband pulse
transmitting transfer function of the array are the sam
as those for the X wave in Fig. 1. The FWHM of th
Gaussian shading was 25 mm.
2417Fox et al.: Fourier–Bessel field calculation and tuning



4,
–

a-
in
FIG. 5. The images are the same as those in Fig.
except that they are produced with the Rayleigh
Sommerfeld diffraction formula. The layout and the p
rameters used in simulation are the same as those
Fig. 4.
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ac
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though the simulated and experimental pulses are very s
lar in the closer regions around the focus in panels~b! and
~c!, respectively.

VI. THEORY FOR TUNING

A. Tuning theory-based on Fourier–Bessel series

We consider now how to tune the transducer surf
pressure in order to produce~as closely as physically pos
sible! a particular desired propagating field. Assuming
given desired fieldd(r ,z,td) in the form

d~r ,z,td!5(
s50

nv

D~r ,z,vs!e
2 j vstd

⇒D~r ,z,vs!5FFT$d~r ,z,td!% ~22!

the tuning technique adopted will be to consider each
quency componentd(r ,z,td ,vs)5D(r ,z,vs)•e2 j vstd of the
desiredfield separately, and to minimize the sum of squa
2418 J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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differences between it and the correspondingphysically ob-
tainable field term f (r ,z,td ,vs)5F(r ,z,vs)•e2 j vstd in Eq.
~13! over a given set of field pointsr , z of interest. Due to
the common time elemente2 j vstd in both terms, this problem
reduces to minimizing the squared sums of the Fourier co
ficient differences S(vs)5( r ,ziF(r ,z,vs)2D(r ,z,vs)i2.
Separating outF(r ,z,vs) andD(r ,z,vs) into real and imagi-
nary parts then gives

F~r ,z,vs!5FR~r ,z,vs!1 jF I~r ,z,vs!,

D~r ,z,vs!5DR~r ,z,vs!1 jD I~r ,z,vs!, ~23!

S~vs!5(
r ,z

~@FR~r ,z,vs!2DR~r ,z,vs!#
2

1@FI~r ,z,vs!2DI~r ,z,vs!#
2!,

whereD(r ,z,vs)5FFT$d(r ,z,t)% from Eq. ~22!. Now, the
he
ri-
The
FIG. 6. Experimental results that correspond to t
simulations in Figs. 4 and 5, except that in the expe
ment the phases applied by a lens was continuous.
same transducer for Fig. 3 was used.
Fox et al.: Fourier–Bessel field calculation and tuning
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s
obtainable field termsF(r ,z,vs) in Eq. ~13! are functions of
the quantization levelsQ1(vs)¯QN(vs) by definition, and
so minimization ofS(vs) necessarily requires adjustment
all their componentsgp(vs) and dp(vs) as defined in Eq.
ts

.

d

-
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~6!. Then from Eqs.~13! and~6! the real and imaginary part
of F(r ,z,vs) at all points of interestr 5r u , z5zv over a set
of nu radial indicesu51¯nu and nv propagation indices
v51¯nv may then be written out as
3
FR~r 1 ,z1 ,vs!

FI~r 1 ,z1 ,vs!

A
FR~r u ,zv ,vs!

FI~r u ,zv ,vs!

A
FR~r nu

,znv
,vs!

FI~r nu
,znv

,vs!

4 53
lim
a→`

(
i 51

l (ks ,a)

J0S xir 1

a D F1Mi ,1,1,s
R ,2Mi ,1,1,s

I ,...,1Mi ,N,1,s
R ,2Mi ,N,1,s

I

1Mi ,1,1,s
I ,1Mi ,1,1,s

R ,...,1Mi ,N,1,s
I ,1Mi ,N,1,s

R G
A

lim
a→`

(
i 51

l (ks ,a)

J0S xir u

a D F1Mi ,1,v,s
R ,2Mi ,1,v,s

I ,...,1Mi ,N,v,s
R ,2Mi ,N,v,s

I

1Mi ,1,v,s
I ,1Mi ,1,v,s

R ,...,1Mi ,N,v,s
I ,1Mi ,N,v,s

R G
A

lim
a→`

(
i 51

l (ks ,a)

J0S xir nu

a
D F1Mi ,1,nv ,s

R ,2Mi ,1,nv ,s
I ,...,1Mi ,N,nv ,s

R ,2Mi ,N,nv ,s
I

1Mi ,1,nv ,s
I ,1Mi ,1,nv ,s

R ,..,1Mi ,N,nv ,s
I ,1Mi ,N,nv ,s

R G 4 F
g1~vs!

d1~vs!

A
gN~vs!

dN~vs!

G , ~24!
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whereMi ,p,v,s
R and Mi ,p,v,s

I are the real and imaginary par
of Ci ,pej b i (vs)zv, respectively (p51¯N). This expression
takes the block form

F~vs!5M ~vs!T~vs!, ~25!

where

F~vs!5@FR~r 1 ,z1 ,vs!,F
I~r 1 ,z1 ,vs!,...,F

R~r nu
,znv

,vs!,

FI~r nu
,znv

,vs!#8 ~26!

is the vector on the left-hand side of Eq.~24!, with dimen-
sion F(vs)5$2nunv,1% in which the notation$rows, col-
umns% indicates the numbers ofrows and columns, respec-
tively. The vectorT(vs) is

T~vs!5@g1~vs!,d1~vs!,...,gN~vs!,dN~vs!#8 ~27!

appearing on the far right-hand side of Eq.~24! with dimen-
sion T(vs)5$2N,1%. Finally M (vs)5$2nunv,2N% repre-
sents the limit asa→` of the large remaining matrix in Eq
~24! premultiplying T(vs). Similarly to F(vs)5$2nunv,1%
in Eq. ~26! we may then also define a vectorD(vs)
5$2nunv,1% as

D~vs!5@DR~r 1 ,z1 ,vs!,D
I~r 1 ,z1 ,vs!,...,D

R~r nu
,znv

,vs!,

DI~r nu
,znv

,vs!#8, ~28!

which allows the error sumS(vs) in Eq. ~23! to be written
S(vs)5@F(vs)2D(vs)#8•@F(vs)2D(vs)#. Substituting
for F(vs)5M (vs)T(vs) from Eq. ~25! then givesS(vs)
5@M (vs)T(vs)2D(vs)#8@M (vs)T(vs)2D(vs)# which
may be minimized by adjusting allp51,...,N components
gp(vs), dp(vs), in T(vs) appropriately. This is a standar
linear least-squares problem with solutionT(vs)5Tls(vs)
given by

Tls~vs!5@M 8~vs!M ~vs!#
21M 8~vs!D~vs!, ~29!

where @M 8(vs)M (vs)#21M 8(vs) is the Moore–Penrose
pseudoinverse ofM (vs). The existence of this pseudoin
verse requires@M 8(vs)M (vs)# to be invertible, which is to
say @M 8(vs)M (vs)#5$2N,2N% must have full rank 2N;
and since the rank of any matrix cannot exceed its low
dimension, this cannot be achieved if the row dimens
2nunv of M (vs)5$2nunv,2N% is less than its column di-
mension 2N. Hence we obtain the fundamental requireme
nunv>N in order to prevent M (vs) and thereby
M 8(vs)M (vs) from being rank deficient for dimensiona
reasons. Assuming then thatM (vs) is full rank for a given
value ofa, we also still need in practice to iterate increasi
values ofa to simulatea→` for the same reasons, as a
ready discussed in Sec. IV A. In this case however, we c
culateTls(vs) for each value ofa and wait for the corre-
sponding magnitudesuTls(vs)u to converge to within
acceptable levels rather than to wait foruF(r ,z,vs)u to con-
verge as was the case in Sec. IV A.~See Ref. 13 for an
illustration of quantization level convergence in the cw cas!.

In addition, consideration also needs to be given to
spatial sampling rates in the given region of interest. Fr
Eq. ~11! we observe that the nonevanescent componentsi of
the sum propagate in thez direction asej b i (vs)z with wave-
length 2p/b i(vs). The shortest possible wavelength
therefore that corresponding to the maximum possible n
evanescent value ofb i(vs), namelybmax5ks which occurs
whena i50 in Eq. ~10!. This gives a wavelength of 2p/ks ,
and to comply with the Shannon sampling theorem this d
tates a corresponding sampling interval in thez direction of
p/ks or lower. With respect to the radial directionr , the
approximationJ0(a i r )'A2/pa i r cos(air2p/4) from Refs.
1 and 2 allows us to approximate the radial oscillations a
cosine function of wavelength 2p/a i . The minimum wave-
length possible is therefore also 2p/ks , corresponding to the
maximum nonevanescent valuea i5ks possible in Eq.~10!.
This gives maximum sampling interval in ther direction also
of p/ks . Finally, considering that the highest wave numb
present in the system isknv

corresponding tos5nv , we

adopt a final maximum sampling interval ofp/knv
5p/2kc
2419Fox et al.: Fourier–Bessel field calculation and tuning
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FIG. 7. Tuning results of X wave with simulated fiel
at z585 mm @Fig. 1~a!# as a desired field using
Fourier–Bessel method. With the tuned weighting
the transducer, fields were reconstructed at distanc
~a! z585 mm, ~b! z5170 mm, ~c! z5255 mm, and
~d! z5340 mm, respectively, away from the transduc
surface.
l-
be

s
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te
5c/2f 0nv m in bothr andz directions in order to cover the
highest spatial oscillations present in the system.

B. Algorithm for tuning

From the discussion in Sec. VI A and including know
edge already gained in Secs. II–IV, the tuning algorithm
comes the following.

~1! If not known a priori, obtain Fourier coefficient
D(r ,z,vs)5FFT$d(r ,z,td)% from Eq. ~22! for desired
field. Make sure thatD(r ,z,vs) is specified at all points
of interest r 5r u , z5zv (u51¯nu and v51¯nv),
with sampling interval in bothr andz directions being at
mostp/knv

5p/2kc5c/2f 0nv m.
~2! Set frequency index tos50.
~3! Select initial modeling aperturea ~e.g., a510R, a

515R, a520R, etc.!.
2420 J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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~4! Estimate the corresponding number of nonevanesc
termsl (ks ,a) from Eq. ~12!.

~5! Evaluate coefficientsCi ,p for i 51,...,l (ks ,a) from Eq.
~9!.

~6! EvaluateM (vs) based on Eq.~24! but with the infinite
limit a→` removed.

~7! If necessary, continue to increasei until a i.k to ensure
numerically that the evanescence limit has been reac
If any of the first few evanescent terms still contribu
significantly in the ranges ofz of interest, include them
in the sum forM (vs). Stop increasingi when no further
terms are significant.

~8! Evaluate least-squares quantization vectorTls(vs) from
Eq. ~29!.

~9! Compare current evaluation ofTls(vs) with that for pre-
vious value ofa. If not converged to within satisfactory
limit, increase the value ofa and go back to step~4!.
ith

d
at
FIG. 8. Tuning results of focused Gaussian pulse w
simulated field atz550 mm ~Fig. 4~a!! as a desired
field using Fourier–Bessel method. With the tune
weighting of the transducer, fields were reconstructed
distances: ~a! z550 mm, ~b! z5120 mm, ~c! z
5150 mm, and~d! z5216 mm, respectively, away
from the transducer surface.
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FIG. 9. Tuning results of focused Gaussian pulse w
part of the simulated field atz550 mm@Fig. 4~a!# as a
desired field using Fourier–Bessel method. Withinr
<12 mm, the desired field was the same as the sim
lated field in Fig. 4~a!, otherwise it was set to zero. With
the tuned weighting of the transducer, fields were
constructed at distances:~a! z550 mm, ~b! z
5120 mm, ~c! z5150 mm, ~d! z5216 mm.
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~10! Reconstruct all quantization levelsQp(vs)5gp(vs)
1 j dp(vs) usinggp(vs) anddp(vs) from Tls(vs).

~11! If s,nv , increases by 1 and go back to step~3!.
~12! Evaluate time domain quantization valuesqp(td)

5IFFT$Qp(vs)% from Eq. ~5! based on all coefficients
Qp(vs).

VII. EXAMPLES OF TUNING

A. X wave

Now consider tuning the transducer to produce an
wave using the algorithm of Sec. VI B. The intention here
to show that by defining a desired field as an X wave a
given location in space (z585 mm), we are able to tune th
transducer quantization levels so as to generate this X w
profile as closely as possible. If this is achievable, it will
evidenced by the pulse created from these quantization le
being essentially identical to the original X wave simulati
already shown at the distances~a! z585 mm, ~b! z
5170 mm, ~c! z5255 mm, ~d! z5340 mm in Fig. 1. To
implement the algorithm we begin with taking the field
Fig. 1~a! as the desired fieldd(r ,z,td) and obtain
D(r ,z,vs)5FFT$d(r ,z,td)% from Eq. ~22! at all sampling
points r 5r u of interest; namely those corresponding to
vertical line across the entire diameter of the transducer a
axial distance ofz585 mm into the medium. The samplin
resolution in the lateral (r ) direction is taken as 0.12 mm
which complies with the maximum upper bound ofp/2kc

50.15 mm discussed in Sec. VI. Running the algorithm p
duces convergence of terms ata520R and the field resulting
from the corresponding tuned transducer quantization le
is shown in Fig. 7 at distances~a! z585 mm, ~b! z
5170 mm, ~c! z5255 mm, ~d! z5340 mm. Notice that
these are essentially identical to those of Fig. 1, with o
some very small differences along the central axis in the
field aroundz5340 mm in panel~d!. From the extremely
close similarity in propagated pulses for both original a
tuned X waves simulations, we may conclude that the tun
J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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algorithm is indeed producing the correct surface press
profiles required to generate the desired~realizable! pulse in
the medium.

B. Focused Gaussian pulses

In Fig. 8 we show the same tuning approach, but t
time for the focused Gaussian pulse with desired field as
the simulated field in Fig. 4~a! at z550 mm. Again, the
original and regenerated fields at the tuning positions
virtually identical ~Figs. 4 and 8, respectively!, as are the
field shots at the remaining distances~b! z5120 mm, ~c! z
5150 mm,~d! z5216 mm. This again demonstrates corre
tuning of the quantization levels, but this time to produce
focused Gaussian pulse. Figure 9 shows the results o
again for a focused Gaussian beam, but this time based o
adaption of the field given in Fig. 4~a!. The adaption is to se
the desired field atz550 mm to zero beyondr 512 mm,
which is to say a truncation of the original Gaussian pro
in the radial direction. Feeding this new desired field into t
tuning algorithm then gives propagating field as per pan
~a!–~d! in Fig. 9. Figure 9~a! in this case remains very simi
lar to Fig. 4~a!, showing that requiring the field beyondr
512 mm being zero whilst at the same time keeping

FIG. 10. Schematic diagram of an arbitrarily designed focused pulse.
pulse is 50 mm away from the transducer surface. The shape of puls
axial direction is an arc with a height and radius of 24 and 70 mm, resp
tively. The weighting of the pulse in lateral (r ) direction is a Gaussian
function with s57.2 mm (FWHM512 mm).
2421Fox et al.: Fourier–Bessel field calculation and tuning
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FIG. 11. Tuning results with a designed focused field
z550 mm in Fig. 10 using Fourier–Bessel metho
With the tuned weighting of the transducer, fields we
reconstructed at distances:~a! z550 mm, ~b! z
5120 mm, ~c! z5150 mm, and~d! z5216 mm, re-
spectively.
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original field segment for 0<r<12 mm cannot in fact be
achieved. Furthermore, the attempt to attain the trunca
field distribution atz550 mm not only proves impossibl
but also leads to a considerable distortion atz5216 mm with
respect to the original field. Therefore this example illu
trates the important point that not all desired fields
achievable, merely that the algorithm tunes the field in
least-squares sense with respect to a given desired fi
Hence the topic of which desired fields are realizable a
which are not is one which needs further attention in fut
work.

To illustrate a more successful attempt, Fig. 10 th
gives a schematic diagram of an alternative desired focu
Gaussian pulse. The pulse is depicted as it passes throug
vertical ~radial! line at z550 mm away from the transduce
surface. The shape of the pulse in the axial direction is an
with a height and radius of 24 and 70 mm, respectively, w
the intended focus being atz5501705120 mm. The shad-
ing in the lateral direction is chosen as a Gaussian func
with s in Eq. ~21! now taken ass57.2 mm rather thans
515 mm previously. This selection causes the amplitude
reduce to half atr 56 mm, thus FWHM512 mm as com-
pared to 25 mm previously. The pulse wave front travels a
velocity c51500 m s21 and the corresponding projection o
the wave front along the radialr axis as it travels through
z550 mm gives the desired fieldd(r ,z,t) for the tuning al-
gorithm. Figure 11 then gives the tuned field results at~a!
z550 mm, ~b! z5120 mm, ~c! z5150 mm, ~d! z
5216 mm. Figure 11~b! shows that the pulse focuses atz
5120 mm as intended, and the fields in Figs. 11~a!, ~c!, and
~d! then demonstrate broadly the same propagation cha
teristics before and after focus as for the original Gauss
pulse considered in Fig. 4. Hence this example demonstr
a case where the desired field is actually realisable to wi
a satisfactory degree, in contrast to that discussed earlie
Fig. 9.

VIII. CONCLUSIONS AND FURTHER WORK

A method has been given for computing and tuning
linear lossless field of flat PW annular arrays using
2422 J. Acoust. Soc. Am., Vol. 113, No. 5, May 2003
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Fourier–Bessel series. The series corresponds to a se
known Bessel beams propagating into the medium, wh
provides a linear mapping between the transducer sur
and the field at any point in space. The method was foun
be computationally fast whilst maintaining accuracy and
fering computation arbitrarily close to the transducer surfa
The related tuning method derived then enabled beamfo
ing of the propagated field in a least-squares sense with
spect to a given desired field. However, further work is s
needed to determine which desired fields are realisable f
given transducer geometry.

Other possible developments of the current work
also evident. First, an extension to lossy media is of inte
in order to model propagation in a wider set of media such
human tissue. Second, an extension to a Bessel-based
nique for nonlinear propagation would useful if suc
progress could be made. Third, its extension to an analys
two-dimensional~2D! arrays is of prime interest. This woul
require the use of 2D Fourier–Bessel series, which are
pable of modeling non-circular-symmetric quantization p
files and thereby more generalized field distributions. Ho
ever, whilst conceptually a straightforward progression,
use of 2D series will necessarily lead to higher compu
tional demands due to the increased number of Bessel te
and transducer elements involved.
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