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A one-dimensionallD) Fourier—Bessel series method for computing and tutiiegmforming the

linear lossless field of flat pulsed wave annular arrays is developed and supported with both
numerical simulation and experimental verification. The technique represents a new method for
modeling and tuning the propagated field by linking the quantized surface pressure profile to a
known set of limited diffraction Bessel beams propagating into the medium. This enables derivation
of an analytic expression for the field at any point in space and time in terms of the transducer
surface pressure profile. Tuning of the field then also follows by formulating a least-squares design
for the transducer surface pressure with respect to a given desired field in space and time. Simulated
and experimental results for both field computation and tuning are presented in the context of a
10-ring annular array operating at a central frequency of 2.5 MHz in wate20@8 Acoustical
Society of America.[DOI: 10.1121/1.1560211

PACS numbers: 43.20.Bi, 43.26f, 43.38.Hz[ANN]

I. INTRODUCTION using a set of Bessel beam basis functions. In Refs. 31 and
32 these were applied across the transducer surface to de-
In this article we describe a method for computing andcompose the emitted field into a known set of limited diffrac-
tuning linear lossless fields from flat pulsed waf@\) an-  tion Bessel beams. In this article the analysis is extended to
nular arrays by using a one-dimensiofHD) Fourier—Bessel solve for the emitted field itself as a weighted set of exact
series'? The use of this series allows the propagated field tdBessel solutions to the wave equation and study the method
be described as a polychromatic set of nondiffractlhg for polychromatic(pulsed waves. We show that the method
Bessel beanid giving a linear mapping between the spatial correlates well with both previous experimental reSuitsd
guantization levels on the transducer surface and the propaimulations based on the Rayleigh—Sommerfeld diffraction
gated field at any point in space. The technique leads to tformula. The method also allows us to tune the PW field in a
new method for both the tuning and fast computation of PWeast-squares sense with respect to a given desired PW field

annular fields. distribution by choosing the transducer surface quantization
Bessel beams are the components of polychromatic Xevels accordingly.
waves and have been studied extensively in recent y&ars. In Sec. Il model definitions for the governing wave

Theoretically, nondiffracting beams such as Bessel beamgquation and structure of PW annular arrays are introduced.
and X waves can propagate superluminalgt a speed Section Il then explains the application and interpretation of
c/cos¢ wherec is the speed of sound andis the Axicon 1D Fourier—Bessel series and Sec. IV develops a method for
anglé*19, to an infinite distance without spreading if they computing the propagated field using these series. Section V
are produced with an infinite aperture and energy. In pracgives numerical examples of the field computation for X
tice, nearly exact X waves can still be realized with eitherwaves and focused Gaussian pulses, comparing them also to
broadband or band-limited radiators over deep depth offieldexperimental data and a classid&ayleigh—Sommerfe)d
and for this reason, these and other related béah<6-21 field calculation method. In Sec. VI a least-squares field tun-
have been studied extensively for medical imadifig’tis-  ing design is given, followed in Sec. VII by numerical ex-
sue property identificatiofr, blood flow velocity vector amples for X waves and focused Gaussian pulses. Finally,
measuremerf nondestructive evaluation of materidls, Sec. VIl summarizes, draws conclusions, and suggests fur-
communication$® electromagnetic® and optics!=° ther work.

The present study draws on previous knowledge of
Bessel beams and X waves to formulate a method for both. MODEL DEFINITIONS
computing and tuningbeamforming the propagated field by A. Propagation model

SElectronic mail: pdf@oersted dtu.dk Annular arrays have circular symmetry and correspond-
bElectronic mail: jcheng@eng.utoledo.edu ingly the. resulting propagation in Ilnear free space is dictated
®Electronic mail: jilu@eng.utoledo.edu by the circular-symmetric wave equation

2412 J. Acoust. Soc. Am. 113 (5), May 2003 0001-4966/2003/113(5)/2412/12/$19.00 © 2003 Acoustical Society of America



3?1 ¢

f(r,z,t)=0, (D)

Pl
——|r—=|+
ror\ ar
wheref(r,z,t) is the scalar field value, is the radial dis-
tance from the cylindrical centerling,is the outward propa-
gation distance perpendicular to the transducer surfsite
ting in thez=0 plane and centered aroune 0), andc is
the speed of sounthssumed real This equation has an in-
finite number of Bessel beam solutidif the form

f(l’,Z,t,w)=J0(ar)eJBZefjwt,

p= =2
where k is the wave numbefrea) and « any real non-
negative value ¢=0).

Notice that fora>k, the axial paramete8= k- a?
becomes imaginary and in this cal{e,z,t,») decays expo-
nentially rapidly in thez direction. In particular, it becomes
an evanescent wave for large enoygnd this will become

a2z c? at?

)

k=wlc,

a key property in the development of the field calculation.

The other important property is that a&=0 the field is

f(r,0t,w)= Jo(ar)-e 1 and therefore a pressure profile
Jo(ar)e 1@t at z=0 necessarily gives rise to a propagating
Bessel beant2). Therefore, if it is possible to describe the

IFFT{Qy(ws)} denotes the inverse fast fourier transform
(IFFT) of Q,(ws). Hence the entire array of al rings may
then be represented as

ga(ty) n, | Qi(ws)

: = : efjwstd (5)
an(ta)] 70 L Qulwy)
in which each entrfQ,(ws) for p=1,... N is generally com-

plex

Qp(ws): 'Yp(ws)+j 5p(ws) (6)

with y,(ws) and 5y(ws) being the real and imaginary parts
of Q,(ws), respectively. This corresponds to each ring emit-
ting  pressure Qu(wge 1*si=|Q (wy)|el(@Jewstd

= |Qp(ws)|e_]w5(td_7p(w8))7 where |Qp(ws)|v p(ws), and
7p(ws) are the respective ring magnitudes, phases, and time
delays obtained from Ed6) as

|Qp( C’)s)| = \/'}’p(ws)2+ 5p( ws)za
ap(ws) =—] In(Qp(ws)”Qp(ws)D,

Tp( wg) = ep( ws)/ ws.

()

field over an annular transducer’s surface as a sum of termf. USE OF 1D FOURIER-BESSEL SERIES

of the typef(r,0t,w)=Jo(ar)e 1! with different « and B

values, the propagating field in linear media becomes the

summation of each individual field given by E(). And
since EQ.(2) is an equation not involving costly numerical

A. Application of infinite series

A 1D Fourier-Bessel seriéd may be used to model the
quantized surface pressugér,ws) at each frequencwg in

computations such as integration, this approach demonstrat&s]. (4) by an infinite set of known basis Bessel functions as

potential for fast field computation.

B. PW annular arrays

We consider flat annulaX-ring PW arrays of radiuf
with surface pressurg(r,t), which are quantized spatially
in the radialr direction due to their ring structure. This re-
sults in N sequentially discretized pressure profilgs(t),
wherep=1,... N is the ring number ang=1 for the inner
ring with p=N for the outer ring. Time and frequency do-
main representationg,(t) and Q(w) for each ringp are
linked formally by the continuous Fourier transform pair

Q)= | apvyerat

<gp(t) =ifm Qp(w)e 1“'dw, 3
27 ) o P

Q(r,ws>=§l Al(wgdo(air),

ai:Xi/a: Jo(Xi):o, (8)

2 a
Alw)= 25z | atr wardotanr,

whereJy(-) is the Bessel function of the first kind of order
zero andx; in Eq. (8) are the known infinite set ofreal)
monotonically increasing positive solutions th(x;)=0.
This series applies over the rangef<a for any choice of
modeling aperturea, subject to Q(a,ws)=0 due to
Jo(@ja)=Jy(x;)=0 for all i. (Note also that for ease of
discussion, we use the teraperture here to refer to the
modeling radiusa rather the full diameter ) For annular
arrays, we may therefore select any valhe R since the
surface pressur®(r,w;) is considered to be zero fo=R

although we assume here a sampled system with fixed pul$e the transducer plane=0.
repeat frequency such that the system is represented by the The spatial profileQ(r,w,) for a givenw, is stepwise

discrete Fourier sum

Ap(te) = Ejo Qp(wgle st w=s27f,
Qu(w9) = FFT{G,(te)} = Uy(te) = FFT{Qp(wg)},

wheren,, is the number of nonzero Fourier frequencigs,
denotes fundamental frequency in hertz, agddenotes a
discrete sampling point in time. The notation REJ(ty)}

denotes taking the fast fourier transfo(FFT) of q,(t) and
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constant Q(r,ws) =Q,(ws) for the N rings p=1,...N
present over the radial range<@ <R. Beyond this range it
becomesQ(r,ws) =0 for R<r=<a and together these two
consecutive ranges allow;(wg) in Eq. (8) to be evaluated
analytically as

N
Ai<ws>=p§1 Ci pQpws),
9)

Cip=2[rydalairy)—r,da(airy)axJi(x),
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whereJ, () is the first-order Bessel function of the first kind (ks @) _ _

andr , r; are inner and outer radii of ring, respectively. f(r,z,t,ws) = E Ai(wg)Jo(air)elfilesdze=lost  (11)

[Hencer; =0 (transducer centgrand r =R (transducer =1

outer edgg by definition, with the kerf between successive This truncation limitl (ks,a) may also be estimated analyti-

rings beingr;—r;,l for p=2,...N.] Note also that the cally by replacingk with kg in the expression fot(k,a)

quantitiesA;(ws) are complex sinc®,(ws) in Egs.(4)—(6)  derived previously in Refs. 13 and 32 to obtain

are complex and onlg; , in Eq.(9) are real. See Ref. 13 for _

a more detailed numeripcal insight from the equivalent terms I(ks,a)~ksa/m+1/4, (12)

in the cw case. which is proportional to wave numbég and modeling ap-
Returning then to Eq(8), the result is that the annular erturea, but independent of any particular transducer pres-

transducer pressure has now become equivalent to the inureQ(r, ws).

nite sum of weighted Bessel functior®(r,wg). Hence,

when multiplied through by their common temporal compo-;\y THEORY FOR FIELD COMPUTATION

nent e"_“’s‘, the transducer pressure becomes . )
Q(r,wy) e jos :Eim:lAi(‘Us)JO(Qir)eijwst in which each A Field computation theory based on Fourier—Bessel

weighted componendy(a;r)e st is a Bessel beam solu- series
tion (2) to the wave equatiofl) at z=0. Correspondingly, When implemented over an infinite aperturga—~),
an infinite set of known Bessel beams propagate into théhe entire transducer plane 20 fromr=0 tor=« atz
medium as =0 becomes modeled by the Fourier—Bessel series. Then
o the propagating field at timg, is given by the infinite aper-
f(r,z,t,ws)=2 A(w9)dg( ) - elFiledzg=iodt ture implementation of Eq11), namely
=1

(10) f(r.zty,ws) =F(r,z,ws)e 15,

Bi(wS): ng_alz kS:ws/C, |(ks,a) T .
F(r,z,ws)= lim 2 JO(iT) el Bi(wg)z
i1

a—ow |

(13

whereA;(ws) - Jo(a;r)ePiledZeIos s the full Bessel solu-
tion for z#0 to Eq.(1), k¢= wg/c is the wave number, and
ai, Bi(ws) are the propagation parameters in the radial and
axial directionsr, z, respectively.

N

x| 2, Cip(vpl(ws) +]8(wg)

and the complex term&(r,z,ws) are obtained from Egs.
_ o ) (11, (9), and (6). Notice from Eq. (13 that the terms
B. Truncation to finite series F(r,z,ws) are Fourier coefficients mapping the transducer
Now consider the behavior ¢;(w) in Eq. (10) as the surface pressureQ(ws)= yp(ws)+jdy(ws) to the field
coefficient indexi changes. The scaling parametess f(r,z,tq,ws) at arbitrary positions, z. Hence defining the
=x;/a in Eq. (8) increase monotonically with indeixfor a  total fieldf(r,z,t,) as the sumiggo f(r,z,ty,w) of all sub-
given value ofa since the roots;~ i — /4 increase mono- fields f(r,z,ty,ws) in Eq. (13) gives
tonically withi by definition. Hence a change in propagation N,
charagteristics occurs for the_ distinct cases<ks and Qi f(r,z,td)=2 F(r,z,w e 1o
>kg since the wave numbd is real and henc@;(ws) is $=0
purely real whena;<kg but purely imaginary wherg;
>K,. For the case of re@#;(ws), all the corresponding com- =1(r.z,t) =IFFT{F(r.z,09)}, (14
ponents in Eq(10) propagate to infinity due tge/#i(“97| which is to say that the fielél(r,z,t4y) may now, in principle,
=1 even asz—x. However, for the case of imaginary be evaluated rapidly as an IFFT operation for any point in
Bi(ws), the corresponding components usually all becomespace and from any set of transducer surface pressures
evanescent sinae 1#i(“9l2<1 even for very small values of Q,(w).
z in typical ultrasonic applications. Notice also from the defi- However, a numerical problem appears at this point with
nition of B;(ws) in Eg. (10) that the evanescent terms regard to implementation. Equatidd?) indicatesl (kg,a)
e |Bileglz decay more and more rapidly with respectztas —« asa—«, and hence an infinite number of terms need to
i increases sinckB;(w,)| increases monotonically withfor ~ be summed in Eq13) to evaluate-(r,z,ws). This occurs as
all valuesa;>k,. This means that even if a certain numberthe differencen; — «; 1~ m/a between successive values
of a;>ks terms are retained for a given application, all in Eq.(8) decreases asincreases, and hence more and more
higher terms in the series may always be neglected by defiz; terms appear in the nonevanescent rangaxp<ks asa
nition. (See Ref. 13 for a more detailed numerical discussionincreases. Clearly it is impossible to compute an infinite
in the cw case. Therefore only the nonevanescent beamnumber of terms in practice, but the following scheme may
components are considered for most practical purposes, af implemented to circumvent the problem. First replace the
denoting I(ks,a) as the appropriate number of non- infinite limit a—o in Eq. (13) with a smaller fixed value of
negligible components for a given application, the infinitea, such asa=10R. Obtain an estimate df(r,z,ws) from
sum in Eq.(10) becomes replaced by the finite limited dif- Eq. (13) based ora=10R and then increasa to a=15R.
fraction sum Obtain a revised estimate B{r,z, ) based ora=15R and
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compare it to the estimate obtained fa+ 10R. If signifi-  therein. The transducer is &= 10-ring Bessel design trans-
cantly different, increasa to a=20R and compare estimates ducer whose ring edges are located nominally at the first 10
for a=20R with a=15R. Continue to increasa until esti-  zeros ofJy(ar), where «=1202.45 m®. In practice this
mates forF(r,z,ws) based on successive valuesaoéffec-  transducer also has a kerf of approximately 0.2 mm, such
tively converge to constant values. Take the converged estthat in terms of the notation of Sec. 1By =0, r{ =x;/a
mate ofF(r,z, ws) as the final practical approximation to the —kerf/2, r; =x,/a+kerf/2, and so on. The outer radius is
limiting casea— and use this value for insertion into the also truncated from the nominaR=25.48 mm to R
IFFT operation of Eq(14). See Ref. 13 for a detailed illus- =25 mm in practice, and operating conditions are a central
tration of this convergence method at a given propagatiofrequency off.=2.5 MHz (w.=15.71 Mrads?') in water
frequency. at speed of sound=1500 ms ! giving central wave num-

In practice we have found that convergence typicallyberk.=10,471.98 m?. In addition, the transfer function of
occurs at relatively modest values af such asa=20R. the transducer is modeled as a Blackman wind,):
Thereforea= 10R, a=15R, a=20R has been adopted as the
default convergence test sequence for the numerical ex- B(05)=0.42-0.5cogmws/we)
amples given later in this paper. The convergence test itself
was defined as the value affor which the change in mag-
nitude |F(r,z,ws)| between latest and previous value af
dropped to within 0.1% of the magnituté(r,z,ws)| for the _ o _ .
previous value ofa. The field calculation results obtained Which exhibits zero phase shift for all;, with B(0)=0 and
then proved both fast and accurate when compared again@(ws) peaking at the central frequendy=2.5 MHz and

+0.08co$2mws/we): 0<=w<2w,,

B(ws)=0: (19

w20,

the Rayleigh—Sommerfeld field calculation technig(ee
Sec. V for examples and discussipn.

B. Algorithm for field calculation

The field calculation algorithm resulting from Secs.

[I-IV may now be summarized as follows:

possessing a6 dB bandwidth of approximately 0.84.
See Ref. 6 for further discussion of experimental setup and
transducer characteristics. For PW studies, we assume a tem-

poral excitation burst weighting functiag(t) given by
oty =e TG sin(2af ty), (16)

wherety=0.4 us, the burst lasts approximately one and a

(1) If not known a priori, obtain the Fourier coefficients half cycles, and the total observation time is 2048 This

Qp(ws) =FFT{q,y(ty)} for p=1,...N from Eq.(4).

(2) Set frequency index te=0.

(3) Select initial modeling aperture (e.g., a=10R, a
=15R, a=20R, etc).

(4)

termsl(kg,a) from Eq.(12).
(5) Evaluate coefficient€; , for i=1,...I(ks,a) from Eq.
9).
(6) EvaluateF(r,z,ws) based on Eq(13) but with the infi-
nite limit a— oo removed.
()
occurs forz regions of interest whem; >k [i.e., check
for any significant changes iR(r,z,ws)]. Stop increas-
ing i when no significant changes are detected.
Compare current evaluation &f(r,z, ) with that for
previous value of. If not converged to within satisfac-
tory limit, increase the value ad and go back to step

8

Estimate the corresponding number of nonevanesce

Increasd beyondi=I(ks,a) to ensure that evanescence

gives fundamental frequencf,=1/20.48us=48.828 kHz

and with a maximum propagated frequency of 5 MHz due to
Eqg. (15), the Shannon sampling frequency is 10 MHz. In
practice we implement a 100 MHz sampling rate, corre-

eonding to sampling interval of 0.Qds and a total number

of 2048=2' samples §,=1024-1 frequencies for the
FFT and IFFT operations. The excitation burst weighting
g(ty) is then represented by the equivalent Fourier sum

n

g(td>=520 G(ws)e 1osti=G(ws) =FFT{g(ty)}. (17

Finally we define also the underlying driving functigp(t,)
similarly as
n

Xp(tg) = go Xp(ws)e 19sta= X (wg) = FFT{X,(tg)},
(18)

(4.
(9) If s<n,, increases by 1 and go back to stef3).
(10) Evaluate the field a$(r,z,ty) = IFFT{F(r,z,ws)} from
Eq. (14) based on all coefficients(r,z,wy).

wherex,(tq) represents the user-defined driving function for
each ringp: in our case we shall be considering X waves and
focused Gaussian beams as these driving functions. Linking
togetherX,(ws), G(ws), andB(wy) in series from Eqs(18),

(17), and(15) then gives the final transmission quantization
valuesQp(ws) andq,(t) as

Qp( wg) = Xp(ws)G(ws) B(ws)
:>qp(t) = |FFT{Xp( ws)G(ws)B(wy)},

V. EXAMPLES OF FIELD COMPUTATION

A. Transducer geometry and simulated transducer
data

For numerical examples of both field computation in this (19
section and tuning in Sec. VII, we consider the PZT ceramicivhich allows the generation of eith€,(ws) or qy(tg) in
polymer compositd, Bessel transducer of Lu and Greenleaf Eq. (4) corresponding to any desired driving functieg(ty).
described in Ref. 6. The experimental setup for the experitn the remainder of this section we compare the results of the
ment results quoted later in this paper are also describeHourier—Bessel field calculation with both the Rayleigh—
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Simulated Field of X Wave with Fourier-Bessel Method
( f.=2.5MHz, BW=0.81f., D=50mm)

20.48us 2048us
: FIG. 1. Simulated fields of a zero-order band-limited X
= i wave with Fourier—Bessel method at distances: z
=85 mm, (b) z=170 mm, (c) z=255 mm, and(d) z
: . =340 mm, respectively, away from the surface of a
S [ 50-mm-diam annular array. A stepwise X wave aperture
weighting and a broadband pulse drive of the array

T were assumed. The transmitting transfer function of the
{£) =it 40mm array was assumed to be the Blackman window func-

tion peaked at 2.5 MHz and with-6 dB bandwidth
around 0.81,. Parameters, and ¢ are 0.05 mm and
4°, respectively.

(c) z=255mm (d) 2=340mm
0zi01/JQc

Sommerfeld field calculation and the experimentally mea-driving functionx,(ty) has frequency domain representation

sured field given in Ref. 33 for both X waves and focused 2, 5 . —

Gaussian pulses. In Sec. VIl we demonstrate tuning of these  Xp(ws) =€ "o/7 el /e (F=VFo1p), (21

two types of fields with the same transducer. where o=15 mm and the focusF is located atF
=120 mm, with the full-width-at-half-maximum being 25

B. Simulated and experimental field results mm.

For the purposes of generating simulation data, we take )
Up(te) = IFFT{Xp(0s) G(wg) B(wg)} in Eq. (19) as the start- 1+ X wave field
ing points from which to apply both the Fourier—Bes$eB) Figure 1 shows the FB calculated field of a simulated X
field calculation algorithm of Sec. IV B and, for comparison/ wave, whereX,(ws) is defined as per Eq20). The FB al-
verification purposes, the more classical Rayleigh—-gorithm converged for all values at=20R and the field is
SommerfeldRS) field calculation method. The driving func- shown at the four distances(a z=85mm, (b) z
tion X,(ty) for a (zero order X wave™® at z=0 on the =170 mm,(c) z=255 mm,(d) z=340 mm. In all four pan-
transducer surface has frequency domain representation els, the horizontal axis represents time whilst the vertical
Cane . axis represents the radial position away from the center of
Xp(ws)=(2mag/c)e " SIC‘]O(erS/CS'nQ’ (20 the transducer. Figure 2 then shows the RS field calculation
where ag=0.05 mm, {=4°, r;=0, rp=(r;+r;)/2, (p of the same simulated X wave as per Fig. 1. The FB and RS
=2---10) andc=1500 ms!. The focused Gaussian beam plots are virtually identical, and this parallel is offered as an

Simulated Field of X Wave with Rayleigh-Sommerfeld
Diffraction Formula
( f.=2.5MHz, BW=0.81f;, D=50mm )
20.48us 20.48us

48mm

FIG. 2. The images are the same as those in Fig. 1,
except that they are produced with the Rayleigh—
Sommerfeld diffraction formula. The layout and the pa-

rameters used in simulation are the same as those in
(a) z=85mm (b) 2=170mm Fig. 1

48mm

(c) z=255mm (d) 2=340mm 02/011JGC
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Experiment of X Wave
( f.=2.5MHz, BW=0.81f;, D=50mm )

=
£
@
<

FIG. 3. Experimental results that correspond to the
simulations in Figs. 1 and 2. A 10-element, 50-mm di-
Eatif! (LS L ameter, 2.5MHz central frequency, PZT ceramic/
(a) z=85mm 170mm polymer compositel, Bessel transducer was used.

(c) z=255mm (d) z=340mm
0zio1/Jac

indicator of the F-B algorithm’s accuracy since the R-S al-2. Gaussian field
gorithm is widely accepted as a reliable method for field
calculation. Figure 3 shows actual experimental results for ~ Figure 4 shows FB field calculation for the simulated
the Bessel transducer of Ref. 6, which match the predictefbcused Gaussian pulse, wheXg(ws) is given by Eq.(21)
simulated X wave fields given previously in Figs. 1 and 2.and plots are shown fdig) z=50 mm, (b) z=120 mm, (c)

See Ref. 33 for details of experimental setup. A high level ofz=150 mm, (d) z=216 mm. Figure 5 then gives the RS
agreement between theory and practice is observed. Notigg|d calculation for the same pulse, again showing a close
also that the FB algorithm is applicable right up to and in-cqrelation between the FB and RS simulation methods. Fi-

cluding the transducer surface itself since Bcp) applies for nally, Fig. 6 shows experimental results except that in the

. . . . _ :
all z=0, whereas the RS algorithm is not applicable close toexperlmental test of Ref. 6 the transducer had an acoustic
the transducer surface.

When programmed in C under Linux on a Pentium Ill lens added. This supplied a continuous phase shift across the
600 MHz PC with 128 M Bytes of RAM, the FB algorithm transducer surface rather than the discretized phase shifts as-

took approximately 1 min and the RS algorithm approxi-Sumed in the simulation. Therefore some differences be-
mately 10 h. However, a study of runtimes compared withtween Fig. 6 and Figs. 4 and 5 are expected. This is evi-
faster computational techniques such as the impulse respongenced in the differences observed for the near field and far
method*~3°has not yet been conducted at this point in time.field panels(a) and (d) between the respective figures, al-

Simulated Field of Focused Gaussian Pulse
with Fourier—Bessel Method
( fe=2.5MHz, BW=0.811., D=50mm, F=120mm, FWHM=25mm )

20.48us 20.48us

FIG. 4. Simulated fields of a focused Gaussian pulse
with Fourier—Bessel method at distance&) z

=50 mm, (b) z=120 mm, (c) z=150 mm, and(d) z

=216 mm. A stepwise Gaussian aperture shading and a
stepwise phase was assumed. The broadband pulse and
(a) z=50mm {b) z=120mm transmitting transfer function of the array are the same
as those for the X wave in Fig. 1. The FWHM of the
Gaussian shading was 25 mm.

48mm

(c) z=150mm (d) z=216mm

02/01/JQC
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Simulated Field of Focused Gaussian Pulse with
Rayleigh-Sommerfeld Diffraction Formula
( fe=2.5MHz, BW=0.811;, D=50mm, F=120mm, FWHM=25mm )

20.48us 20.48us

FIG. 5. The images are the same as those in Fig. 4,
except that they are produced with the Rayleigh—
Sommerfeld diffraction formula. The layout and the pa-
rameters used in simulation are the same as those in

(a) z=50mm (b) z=120mm Fig. 4.

48mm

(c) z=150mm (d) z=216mm 02/011JQC

though the simulated and experimental pulses are very simdifferences between it and the correspondamysically ob-
lar in the closer regions around the focus in parib)sand tainablefield term f(r,zty,ws) =F(r,z,ws) - 1s'd in Eq.

(c), respectively. (13) over a given set of field points, z of interest. Due to
the common time elemest ! “s'd in both terms, this problem
VI. THEORY FOR TUNING reduces to minimizing the squared sums of the Fourier coef-

ficient differences S(wg) =2, J|F(r,z,ws) —D(r,z,wy)||%.
Separating ouE (r,z,ws) andD(r,z,wy) into real and imagi-
We consider now how to tune the transducer surfaceéary parts then gives
pressure in order to produdes closely as physically pos-
sible) a particular desired propagating field. Assuming a F(r,z,ws)=F%(r,z,ws) +jF(r,z,0y),
given desired fieldi(r,z,ty) in the form
n, D(r,z,ws)=D%(r,z,ws) +jD(r,z,wy), (23
d(r,z,td)=2O D(r,z,ms)e 19t
&

A. Tuning theory-based on Fourier—Bessel series

= R _nR 2
—D(r,2,00)=FFTd(r,2,ty)} 22) S(wg)= 2 ([F(1.2,09 = D71, 2.00)]

the tuning technique adopted will be to consider each fre- +[F2(r,z,ws) —D(r,2,05)1?),
quency componerd(r,z,ty,ws) =D(r,z,ws)-e st of the
desiredfield separately, and to minimize the sum of squaredvhere D(r,z,ws) =FFT{d(r,zt)} from Eq. (22). Now, the

Experiment of Focused Gaussian Pulse

( fe=2.5MHz, BW=0.81f;, D=50mm, F=120mm, FWHM=25mm )

J-10.30us 10.30us
[ FIG. 6. Experimental results that correspond to the
i simulations in Figs. 4 and 5, except that in the experi-
ment the phases applied by a lens was continuous. The

{a) z=50mm {b) z=120mm same transducer for Fig. 3 was used.

48mm

48mm

(c) z=150mm (d) z=216mm

02/01/JQC
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obtainable field term&(r,z,w¢) in Eq. (13) are functions of
the quantization levelQ(wg)---Qn(ws) by definition, and

S0 minimization ofS(ws) necessarily requires adjustment of of n, radial indicesu=1--

(6). Then from Eqs(13) and(6) the real and imaginary parts
of F(r,z,ws) at all points of interest=r,, z=z, over a set
-n, and n, propagation indices

all their componentsy,(ws) and 6,(ws) as defined in Eq. v=1---n, may then be written out as
|
- (ks ,a) R 3 R J -
_— . im S Xily +Mij,l,15’_Mizﬁl,ls""'—'—Mij,N,l,s’_M;tN,l,S
Fj(rl,zl,ws) ane (=1 A MY MY MY e M
F(ry,21,0s)
: Y1(ws)
(K, o
F?(ru’zv’wS) - lim (ia)J ﬁ +M|lus' M|1,vsv "+M|st’ MINUS 1(:(05) (24)
Fo(ry.z,,09) |~ a—w 1=1 % a +M|1vs'+M|1vs'"+M|st*+M|Nus ) ’
: Yn(ws)
F%(rnuvzn , ) On(ws)
Fj(rn.Zn ,(os) l I(k§:a)J ( i +M|1n S Mlln s""+M|Nn S Man .S
L u v - m 3 R J R
_aﬂocl 0 a +M|ln S1+M|1n S!"+M|Nn s1+M|Nn ,S J

whereMmp andM’ Do
of C e‘B'(‘”S)Z, respectlvelyp 1---N). This expression
takes the block form
F(wg)=M(ws)T(ws), (25
where
wS):[Fm(rl1zliws)1F3(rlazlva)1"'1Fm(rnuvznvvws)a

Fj(l’nu,va,wS)]/

is the vector on the left-hand side of E@4), with dimen-
sion F(wg)={2nyn,,1} in which the notation{rows, col-
umng indicates the numbers @bws and columns respec-
tively. The vectorT(wg) is

T(wg) =[v1(ws),01(ws),...,yn(ws), n(ws) |’ (27)

appearing on the far right-hand side of Eg4) with dimen-
sion T(wg)={2N,1}. Finally M(ws)={2n,n,,2N} repre-
sents the limit ag— o of the large remaining matrix in Eq.
(24) premultiplying T(wg). Similarly to F(ws)={2nyn,,1}
in Eq. (26) we may then also define a vect®(ws)
={2nyn,,1} as

D(ws)z[Dm(rl,Zl,ws),Dj(rl,Zl,ws),...

Dj(l’nu,va,a)S)]',

which allows the error sun$(ws) in Eq. (23) to be written
S(ws)=[F(ws) —D(ws)]" - [F(ws) —D(ws)]. Substituting
for F(wg)=M(ws)T(ws) from Eg. (25) then givesS(wy)
=[M(wg) T(ws) ~D(ws)]'[M(ws) T(ws) ~D(ws)]  which
may be minimized by adjusting ai=1,... N components
Yp(ws), Sp(ws), in T(ws) appropriately. This is a standard
linear least-squares problem with solutidfwg) = Ts(ws)
given by

Tls(ws):[M/(ws)M(ws)]_lM,(ws)D(ws)i (29

where [M'(wd)M(wg)] *M'(wg) is the Moore—Penrose
pseudoinverse oM (w). The existence of this pseudoin-

(26)

me(rnuavauws)y

(28)
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. are the real and imaginary parts verse requirefM’(ws)M(ws)] to be invertible, which is to

say [M'(wg)M(ws)]={2N,2N} must have full rank R;
and since the rank of any matrix cannot exceed its lowest
dimension, this cannot be achieved if the row dimension
2n,n, of M(ws)={2nyn,,2N} is less than its column di-
mension A. Hence we obtain the fundamental requirement
n,n,=N in order to prevent M(ws) and thereby
M'(ws)M(ws) from being rank deficient for dimensional
reasons. Assuming then thist(ws) is full rank for a given
value ofa, we also still need in practice to iterate increasing
values ofa to simulatea—« for the same reasons, as al-
ready discussed in Sec. IV A. In this case however, we cal-
culate T\;(w) for each value ofa and wait for the corre-
sponding magnitudegTis(ws)| to converge to within
acceptable levels rather than to wait {&i1(r,z, wg)| to con-
verge as was the case in Sec. IV{&ee Ref. 13 for an
illustration of quantization level convergence in the cw gase
In addition, consideration also needs to be given to the
spatial sampling rates in the given region of interest. From
Eqg. (11) we observe that the nonevanescent comporieofs
the sum propagate in thedirection asel#i(“97 with wave-
length 27/B;(ws). The shortest possible wavelength is
therefore that corresponding to the maximum possible non-
evanescent value @8;(ws), namely B,,.x=ks which occurs
whena;=0 in Eq.(10). This gives a wavelength of2/kg,
and to comply with the Shannon sampling theorem this dic-
tates a corresponding sampling interval in thdirection of
wlks or lower. With respect to the radial directian the
approximationJy(«;r)~2/mwa;r cos(r—m/4) from Refs.
1 and 2 allows us to approximate the radial oscillations as a
cosine function of wavelength7? «; . The minimum wave-
length possible is therefore alser®g, corresponding to the
maximum nonevanescent valag= ks possible in Eq(10).
This gives maximum sampling interval in thelirection also
of m/kg. Finally, considering that the highest wave number
present in the system ilsnw corresponding tes=n,, we
adopt a final maximum sampling interval af'k, = /2K,
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Tuning of X Wave with Simulated Field at z=85mm
Using Fourier-Bessel Method
( fe=2.5MHz, BW=0.81f;, D=50mm )

20.48us 20.48us

£
=
=]
<

(a) z=85mm (b) z=170mm

(c) z=255mm (d) 2=340mm

=c/2fon, m in bothr andz directions in order to cover the (4)
highest spatial oscillations present in the system.
5
B. Algorithm for tuning (6)
From the discussion in Sec. VI A and including knowl-
edge already gained in Secs. 1I-1V, the tuning algorithm be{7)
comes the following.

(1) If not known a priori, obtain Fourier coefficients
D(r,z,ws)=FFT{d(r,zt4)} from Eq. (22) for desired
field. Make sure thabD(r,z,ws) is specified at all points
of interestr=r,, z=z, (u=1---n, andv=1---n)),
with sampling interval in both andz directions being at
mostw/knw= ml2k.=c/2fyn, m.

Set frequency index te=0.

Select initial modeling aperturea (e.g., a=10R, a
=15R, a=20R, etc).

®
9

Tuning of Focused Gaussian Pulse with Simulated Field
at z=50mm Using Fourier-Bessel Method

( f.=2.5MHz, BW=0.81f;, D=50mm, FWHM=25mm )

20.48us 20.48us

48mm

(a) z=50mm (b) z=120mm

(c) z=150mm

(d) 2=216mm
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FIG. 7. Tuning results of X wave with simulated field
at z=85 mm [Fig. 1a] as a desired field using
Fourier—Bessel method. With the tuned weighting of
the transducer, fields were reconstructed at distances:
(@ z=85 mm, (b) z=170 mm, (c) z=255 mm, and

(d) z=340 mm, respectively, away from the transducer
surface.

02/01JQC

Estimate the corresponding number of nonevanescent
termsl(kg,a) from Eq.(12).

Evaluate coefficient; , for i=1,...I(ks,a) from Eq.

9).

EvaluateM (ws) based on Eq(24) but with the infinite
limit a—o removed.

If necessary, continue to increasantil «;>k to ensure
numerically that the evanescence limit has been reached.
If any of the first few evanescent terms still contribute
significantly in the ranges of of interest, include them

in the sum forM (wg). Stop increasing when no further
terms are significant.

Evaluate least-squares quantization vediQfwg) from

Eq. (29).

Compare current evaluation ofs(ws) with that for pre-
vious value ofa. If not converged to within satisfactory
limit, increase the value o and go back to stef?).

FIG. 8. Tuning results of focused Gaussian pulse with
simulated field atz=50 mm (Fig. 4(@)) as a desired
field using Fourier—Bessel method. With the tuned
weighting of the transducer, fields were reconstructed at
distances: (a) z=50 mm, (b) z=120 mm, (c) z
=150 mm, and(d) z=216 mm, respectively, away
from the transducer surface.

02i01/JQC
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Tuning of Focused Gaussian Pulse with Part of Simulated
Field at z=50mm Using Fourier-Bessel Method
( fe=2.5MHz, BW=0.81f;, D=50mm, F=120mm, FWHM=25mm )

20.48us 20.48us

FIG. 9. Tuning results of focused Gaussian pulse with
part of the simulated field a=50 mm[Fig. 4a)] as a
desired field using Fourier—Bessel method. Within
<12 mm, the desired field was the same as the simu-
lated field in Fig. 4a), otherwise it was set to zero. With
(a) z=50mm (b) z=120mm the tuned weighting of the transducer, fields were re-
constructed at distances(a) z=50 mm, (b) z
=120 mm,(c) z=150 mm, (d) z=216 mm.

48mm

(c) 2=150mm (d) z=216mm
02/01/JQC

(10) Reconstruct all quantization levelRy(ws)= y,(ws) algorithm is indeed producing the correct surface pressure
+J 6p(ws) using yp(ws) and 6,(ws) from Tig(ws). profiles required to generate the desifezhlizable pulse in

(11 If s<n,,, increases by 1 and go back to ste3). the medium.

(12) Evaluate time domain quantization valueg,(tq)
=IFFT{Qp(ws)} from Eq.(5) based on all coefficients

Qp(ws)-

B. Focused Gaussian pulses

In Fig. 8 we show the same tuning approach, but this

time for the focused Gaussian pulse with desired field as per
VII. EXAMPLES OF TUNING the simulated field in Fig. @ at z=50 mm. Again, the
original and regenerated fields at the tuning positions are
virtually identical (Figs. 4 and 8, respectivelyas are the

Now consider tuning the transducer to produce an Xfield shots at the remaining distanods z=120 mm, (c) z

wave using the algorithm of Sec. VIB. The intention here is=150 mm,(d) z=216 mm. This again demonstrates correct
to show that by defining a desired field as an X wave at duning of the quantization levels, but this time to produce the
given location in spacez&85 mm), we are able to tune the focused Gaussian pulse. Figure 9 shows the results once
transducer guantization levels so as to generate this X wawgain for a focused Gaussian beam, but this time based on an
profile as closely as possible. If this is achievable, it will beadaption of the field given in Fig.(4). The adaption is to set
evidenced by the pulse created from these quantization levetbe desired field az=50 mm to zero beyond =12 mm,
being essentially identical to the original X wave simulationwhich is to say a truncation of the original Gaussian profile
already shown at the distance® z=85mm, (b) z inthe radial direction. Feeding this new desired field into the
=170 mm, (c) z=255 mm, (d) z=340 mm in Fig. 1. To tuning algorithm then gives propagating field as per panels
implement the algorithm we begin with taking the field in (a)—(d) in Fig. 9. Figure %a) in this case remains very simi-
Fig. 1@ as the desired fieldd(r,z,ty) and obtain lar to Fig. 4a), showing that requiring the field beyond
D(r,z,ws) =FFT{d(r,zty)} from Eq. (22) at all sampling =12 mm being zero whilst at the same time keeping the
points r =r of interest; namely those corresponding to a
vertical line across the entire diameter of the transducer at aiEg
axial distance oz=85 mm into the medium. The sampling
resolution in the lateralr( direction is taken as 0.12 mm
which complies with the maximum upper bound of2k,
=0.15 mm discussed in Sec. VI. Running the algorithm pro-
duces convergence of termsaat 20R and the field resulting
from the corresponding tuned transducer quantization levels
is shown in Fig. 7 at distancesa) z=85 mm, (b) z
=170 mm, (c) z=255 mm, (d) z=340 mm. Notice that [ omm I —omm
these are essentially identical to those of Fig. 1, with only
some very small differences along the central axis in the faF!G. 10. Schematic diagram of an arbitrarily designed focused pulse. The

. _ . pulse is 50 mm away from the transducer surface. The shape of pulse in
field aroundz=340 mm in panel(d). From the eXtremer axial direction is an arc with a height and radius of 24 and 70 mm, respec-

close similarity i'n propagated pulses for both original andtively. The weighting of the pulse in lateral) direction is a Gaussian
tuned X waves simulations, we may conclude that the tuningunction with o=7.2 mm (FWHM=12 mm).

A. X wave

1
1
i
exp(—r*t/7.2*7.2) 1

Shading ," H=24mm
- Focus

Transducer \
R=70mm
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Tuning of a Desired Field with Fourier-Bessel Method

( fe=2.5MHz, BW=0.81f;, D=50mm )

20.48us 20.48us
0dB
FIG. 11. Tuning results with a designed focused field at
f z=50 mm in Fig. 10 using Fourier—Bessel method.
i With the tuned weighting of the transducer, fields were
L _40dB reconstructed at distancega) z=50 mm, (b) z

(a) z=50mm (b) 2=120mm =120 mm, (c) z=150 mm, and(d) z=216 mm, re-

|I| B

(c) 2=150mm (d) z=216mm
02/01/JQC

original field segment for &r<12 mm cannot in fact be Fourier—Bessel series. The series corresponds to a set of

achieved. Furthermore, the attempt to attain the truncatefnown Bessel beams propagating into the medium, which
field distribution atz=50 mm not only proves impossible Pprovides a linear mapping between the transducer surface
but also leads to a considerable distortioz-a216 mm with ~ and the field at any point in space. The method was found to
respect to the original field. Therefore this example illus-be computationally fast whilst maintaining accuracy and of-

trates the important point that not all desired fields arefering computation arbitrarily close to the transducer surface.
achievable, merely that the algorithm tunes the field in arhe related tuning method derived then enabled beamform-
least-squares sense with respect to a given desired fielthg of the propagated field in a least-squares sense with re-

Hence the topic of which desired fields are realizable angpect to a given desired field. However, further work is still
which are not is one which needs further attention in futureneeded to determine which desired fields are realisable for a

work. given transducer geometry.

To illustrate a more successful attempt, Fig. 10 then  Other possible developments of the current work are
gives a schematic diagram of an alternative desired focusedlSo evident. First, an extension to lossy media is of interest
Gaussian pulse. The pulse is depicted as it passes through tifleorder to model propagation in a wider set of media such as
vertical (radia)) line atz=50 mm away from the transducer human tissue. Second, an extension to a Bessel-based tech-
surface. The shape of the pulse in the axial direction is an ar@ique for nonlinear propagation would useful if such
with a height and radius of 24 and 70 mm, respectively, withProgress could be made. Third, its extension to an analysis of
the intended focus being at=50+ 70=120 mm. The shad- two-dimensional2D) arrays is of prime interest. This would
ing in the lateral direction is chosen as a Gaussian functiofiequire the use of 2D Fourier—Bessel series, which are ca-
with o in Eq. (21) now taken asr=7.2 mm rather thamr pable of modeling non-circular-symmetric quantization pro-
=15 mm previously. This selection causes the amplitude tdiles and thereby more generalized field distributions. How-
reduce to half ar =6 mm, thus FWHM=12 mm as com- ever, whilst conceptually a straightforward progression, the
pared to 25 mm previously. The pulse wave front travels at aise of 2D series will necessarily lead to higher computa-
velocity c=1500 ms* and the corresponding projection of tional demands due to the increased number of Bessel terms
the wave front along the radial axis as it travels through and transducer elements involved.
z=50 mm gives the desired field{r,z,t) for the tuning al-
gorithm. Figure 11 then gives the tuned field resultgaat ACKNOWLEDGMENTS
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