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Preface

Diffraction and dispersion effects have been well known for centuries and are rec-
ognized to be limiting factors in many industrial and technology applications based,
for example, on electromagnetic beams and pulses. Diffraction is an always-present
phenomenon, affecting two- or three-dimensional waves traveling in nonguiding me-
dia. Arbitrary pulses and beams contain plane-wave components that propagate in
different directions, causing a progressive increase in their spatial width along prop-
agation. Dispersion is due to the dependence of the material media (refractive index)
with frequency: therefore, each pulse’s spectral component propagates with a differ-
ent phase velocity, so that an electromagnetic pulse will suffer a progressive increase
in its temporal width along propagation. It is clear that these two effects may be a
serious restriction for applications where it is highly desirable that the beam keeps
its transverse localization or the pulse keeps its transverse localization and/or tem-
poral width along propagation, which might be desirable, for example, in free-space
microwave, millimetric wave, terahertz and optical communications, microwave and
optical images, optical lithography, and optical tweezers. As a consequence, the de-
velopment of techniques capable of alleviating signal degradation effects caused by
these two effects is of crucial importance.

Localized waves, also known as nondiffractive waves, arose initially as an at-
tempt to obtain beams and pulses capable of resisting diffraction in free space for
long distances. Such waves were obtained initially theoretically as solutions to the
wave equation in the early 1940s (J. A. Stratton, Electromagnetic Theory, McGraw-
Hill, New York, 1941), and were demonstrated experimentally in 1987 (J. Durnin,
J. J. Miceli, and J. H. Eberly, Diffraction-free beams, Phys. Rev. Lett., vol. 58, pp.
1499–1501, 1987). Nowadays localized waves constitute a growing and dynamic re-
search topic, not only in relation to nondispersive free space (or vacuum), but also for
dispersive, nonlinear, and lossy nonguiding media. Taking into account the significant
amount of exciting and impressive results published especially in the last five years
or so, we decided to edit a book on this topic, the first of its kind in the literature. The
book is composed of 13 chapters authored by the most productive researchers in the
field, with a well-balanced presentation of theory and experiment.

xv
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In Chapter 1, Recami et al. present a thorough review of localized waves, em-
phasizing the theoretical foundations along with historical aspects and the intercon-
nections of this subject with other technology and scientific areas.

In Chapter 2, Zamboni-Rached et al. discuss in detail the theoretical structure of
localized waves, and some applications are presented, among which frozen waves are
of particular interest.

In Chapter 3, Besieris and Shaarawi present a hybrid spectral representation method
which permits a smooth transition between two seemingly disparate classes of finite-
energy spatiotemporally localized wave solutions to the three-dimensional scalar wave
equation in free space: superluminal (X-shaped) and luminal (FWM-type) pulsed
waves. An additional advantage of the hybrid form is that it obviates the presence
of backward wave components, propagating at the luminal speed c, that have to
be minimized in practical applications. A modified hybrid spectral representation
method has also been presented which permits a seamless transition from superluminal
localized waves to exact luminal splash modes. Within the framework of a certain
parametrization, the latter are rendered indistinguishable from the paraxial luminal
finite-energy-focused pulsed beam solutions.

In Chapter 4, Jian-yu Lu describes X-waves in depth, providing generalized meth-
ods for obtaining such waves through proper transformations, related primarily to the
Lorentz transformation. X-wave solutions to Schrödinger and Klein–Gordon equa-
tions are also provided. In addition, the potential application of X-waves in medical
ultrasound imaging is demonstrated experimentally.

In Chapter 5, Salo and Friberg show theoretically that diffraction-free wave prop-
agation can also be achieved in anisotropic crystalline media. They explicitly analyze
the effect of arbitrary anisotropies on both continuous-wave and pulsed nondiffracting
fields. Due to beam steering and other effects, generation of nondiffracting waves in
anisotropic media poses new challenges, and the authors propose an efficient scheme
for the generation and detection of a continuous-wave beam in a crystal wafer.

In Chapter 6, Mugnai and Mochi explore Bessel X-waves’ ability to provide local-
ized energy and to exhibit superluminal propagation in both phase and group velocities
(as verified experimentally). The authors also describe the ability of such waves to
travel through a classically forbidden region (tunneling region) with no shift in the
direction of propagation, which makes them different and unique with respect to
ordinary waves.

In Chapter 7, Reivelt and Saari focus on the physical nature and experimental
implementation or generation of localized waves. The authors demonstrate that the
angular spectrum representation and the tilted pulse representation of localized waves
are suitable tools for achieving these purposes. They explain the concepts and results
of their experiments, where the realizability of Bessel X-waves and focus wave modes
was verified for the first time.

In Chapter 8, Porras et al. present an interesting discussion of linear bullets, three-
dimensional localized waves or particlelike waves propagating across a host medium,
defeating diffraction spreading and dispersion broadening. Special attention is given
to the generation of these bullets in practical settings by optical devices or by nonlinear
means, showing the intimate relation between linear and nonlinear approaches to wave
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bullets, as in light filaments. The advantage of linear bullets with respect to standard
wave packets (Gaussian-like) is also demonstrated for a variety of applications, such
as laser writing in thick media, ultraprecise microhole drilling for photonic-crystal
fabrication, and laser micromachining.

In Chapter 9, the theory of X-waves in nonlinear materials is discussed thoroughly
by Conti and Trillo. Potential applications in light-matter interactions at high laser
intensities in quantum optics and on the theoretical prediction of X-waves in Bose–
Einstein condensates are pointed out.

In Chapter 10, by Kukhlevsky, the problem of spatial localization of light in free
space on a nanometer scale is presented in detail. The author shows that a sub-
wavelength nanometer-sized beam propagating without diffractive broadening can
be produced by the interference of multiple beams of a Fresnel light source of the
respective material waveguide. The results demonstrate theoretically the feasibility of
diffraction-free subwavelength-beam optics on a nanometer scale for both continuous
waves and ultrashort (near-single-cycle) pulses. The approach extends the operational
principle of near-field subwavelength-beam optics, such as near-field scanning optical
microscopy, to the “not-too-distant” field regime (up to about 0.5 wavelength). The
chapter includes theoretical illustrations to facilitate an understanding of the natural
spatiotemporal broadening of light waves and the physical mechanisms that contribute
to the diffraction-free propagation of subwavelength beams in free space.

In Chapter 11, Grunwald et al. show experimentally that ultraflat thin-film axi-
cons enable the real physical approximation of nondiffracting beams and X-pulses
of extremely narrow angular spectra. By self-apodized truncation of Bessel–Gauss
pulses (coincidence of first field minimum with the rim of an aperture), needle-
shaped propagation zones of large axial extension can be obtained without additional
diffraction effects. The signature of undistorted progressive waves was indicated for
such needle beams by the fringe-free propagation characteristics and ultrabroadband
spatio-spectral transfer functions.

In Chapter 12, Longhi and Janner provide a general overview of wave localiza-
tion (in a weak sense) for an important and novel class of inhomogeneous periodic
dielectric media (i.e., in photonic crystals), which have received increasing attention
in recent years. Compared to wave localization in homogeneous media, such as in
a vacuum, the presence of a periodic dielectric permittivity strongly modifies the
space–time dispersion surfaces and hence the types of localized waves that may be
observed in photonic crystals.

In Chapter 13, Bouchal et al. focus on theoretical and experimental problems of
nondiffracting and singular optics. Particular attention is devoted to physical prop-
erties, methods of experimental realization, and potential applications of single and
composed vortex fields carried by a pseudo-nondiffracting background beam. The
unique propagation effects of vortex fields are pointed out, and consequences of
their spiral phase singularities manifested by a transfer of the orbital angular mo-
mentum are also discussed. The complex vortex structures whose parameters and
properties are controlled dynamically by a spatial light modulation provide advanced
methods of encoding and recording of information and can be utilized effectively
in optical manipulations. Spatially localized vortex structures can be extended into
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nonstationary optical fields where novel spatiotemporal effects and applications can be
expected.
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CHAPTER FOUR

Ultrasonic Imaging with
Limited-Diffraction Beams
JIAN-YU LU
The University of Toledo, Toledo, Ohio

4.1 INTRODUCTION

One type of limited-diffraction beam was first described by Stratton in 1941as undis-
torted progressive waves (UPWs) [1]. In 1987, without referring to Stratton’s work,
Durnin et al. studied UPWs both by computer simulation and as an optical experiment
[2–4]. Because the UPWs in Stratton’s book have a Bessel transverse beam profile,
they are termed Bessel beams. Durnin et al. named the Bessel beams nondiffracting
or diffraction-free beams [2–4]. Because Durnin’s terminology is controversial in the
scientific community, these beams are commonly termed limited-diffraction beams
[5], since all practical beams or waves will eventually diffract. Bessel beams are
localized in the transverse direction and may have potential applications [6–14]. In
acoustics, the first Bessel annular array transducer was designed and constructed in
1990 [15–16] and patented in 1992 [17]. Applications of Bessel beams in acoustics
have been studied extensively [18–30].

Localized waves (LWs) were developed by Brittingham in 1983 and termed focus
wave modes [31]. LWs have properties similar to those of Bessel beams in terms
of transverse localization. In addition, LWs contain multiple frequencies and may
be localized in the axial direction. LWs have been studied by many investigators

Localized Waves, Edited by Hugo E. Hernández-Figueroa, Michel Zamboni-Rached, and Erasmo Recami
Copyright C© 2008 John Wiley & Sons, Inc.
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[32–40]. However, LWs are not propagation invariant; that is, they do not meet the
propagation-invariant condition as defined in the following: If one travels with
the wave at a speed c1, he or she sees a wave packet, �(�r , t) = �(x, y, z − c1t),
that is unchanged for z − c1t = constant, where z is the axial axis along the
direction of wave propagation, �r = (x, y, z) is a point in space, and t is the
time.

To find multiple-frequency waves that are propagation invariant [i.e., �(�r , t) =
�(x, y, z − c1t)], in 1991, X-waves were developed [41–43] and were studied sub-
sequently [44–54]. The name X-waves was used because the beam profile in the
axial cross section (a plane through the beam axis) resembles the letter “X.” Due to
the interest in X-waves for nonlinear optics and other applications, X-waves were
introduced in 2004 in the “Search and Discovery” column of Physics Today [55]. The
two 1992 X-wave papers [42–43] were awarded by the Ultrasonics, Ferroelectrics,
and Frequency Control (UFFC) Society of the Institute of Electrical and Electronics
Engineers (IEEE) in 1993. Later, an X-wave experiment in optics was performed by
Saari and Reivelt and published in 1997 in Physical Review Letters [56]. To gen-
eralize X-waves, a transformation that is used to obtain limited-diffraction beams
(including X-waves) in an N-dimensional space from any solutions to an (N − 1)-
dimensional isotropic/homogeneous wave equation was developed in 1995 [44],
where N ≥ 2 is an integer. This formula has been related to part of the Lorentz
transformation [57–58], and was used and demonstrated by other researchers [59–
60]. Furthermore, an X-wave transform that is a transformation pair was developed
in 2000 for any physically realizable waves using the orthogonal property of X-
waves [46–47]. The orthogonal property of X-waves was studied further by Salo
et al. in 2001 [61]. The transformation pair allows one to decompose an arbitrary
physically realizable wave into X-waves (inverse X-wave transform) and determine
the coefficients (forward X-wave transform) of the decomposition. Based on X-wave
theory, a method and its extension that are capable of ultrahigh frame rate (HFR)
two- or three-dimensional imaging were developed in 1997 [62–87]. Due to the im-
portance of this method, it was noted as one of the predictions of the twenty-first
century medical ultrasonics in 2000 [88]. After the introduction of X-waves in 1991
[41–43], these waves have been studied extensively by many investigators [56,58–
60,89–123]. There are also some review papers on X-waves and their applications
[124–131].

In this chapter, fundamentals of limited-diffraction beams are reviewed and stud-
ies of these beams are put into a unified theoretical framework. The theory of
limited-diffraction beams is developed further. New limited-diffraction solutions to
the Klein–Gordon and Schrödinger equations as well as limited-diffraction solutions
to these equations in confined spaces are obtained. The relationship between the
transformation that converts any solutions to an (N−1)-dimensional wave equation
to limited-diffraction solutions of an N-dimensional equation and the Lorentz trans-
formation is clarified and extended. The transformation is also applied to the Klein–
Gordon equation. In addition, some applications of limited-diffraction beams are
summarized.
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4.2 FUNDAMENTALS OF LIMITED-DIFFRACTION BEAMS

4.2.1 Bessel Beams

An N-dimensional isotropic/homogeneous wave equation is given by(
N∑

j=1

∂2

∂x2
j

− 1

c2

∂2

∂t2

)
�(�r , t) = 0, (4.1)

where x j ( j = 1, 2, . . . , N ) represents rectangular coordinates in an N-dimensional
space, N ≥ 1 is an integer, �(�r , t) is a scalar function (sound pressure, velocity poten-
tial, or Hertz potential in electromagnetics) of spatial variables, �r = (x1, x2, . . . , xN ),
t is time, and c is the speed of light in vacuum or the speed of sound in a medium.

In three–dimensional space, we have(
∇2 − 1

c2

∂2

∂t2

)
�(�r , t) = 0, (4.2)

where ∇2 is the Laplace operator. In cylindrical coordinates, the wave equation is
given by [

1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2

∂2

∂φ2
+ ∂2

∂z2
− 1

c2

∂2

∂t2

]
�(�r , t) = 0, (4.3)

where r =
√

x2 + y2 is the radial distance, φ = tan−1(y/x) is the polar angle, and z
is the axial axis.

One generalized solution to the N-dimensional wave equation (4.1) is given by
[42,124]

�(x1, x2, . . . , xN ; t) = f (s), (4.4)

where

s =
N−1∑
j=1

D j x j + DN (xN ± c1t), N ≥ 1 (4.5)

and where D j are complex coefficients, f (s) is any well-behaved complex function
of s, and

c1 = c

√√√√1 + ∑N−1
j=1 D2

j

D2
N

. (4.6)
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If c1 is real, f (s) and its linear superposition represent limited-diffraction solutions
to the N-dimensional wave equation (4.1). For example, if N = 3, x1 = x , x2 = y,
x3 = z, D1 = α0(k, ζ ) cos θ , D2 = α0(k, ζ ) sin θ , and D3 = b(k, ζ ), with cylindrical
coordinates, we obtain families of solutions to (4.3) [42,124]:

�ζ (s) =
∫ ∞

0
T (k)

[
1

2π

∫ π

−π

A(θ ) f (s) dθ

]
dk (4.7)

and

�K (s) =
∫ π

−π

D(ζ )

[
1

2π

∫ π

−π

A(θ ) f (s) dθ

]
dζ, (4.8)

where

s = α0(k, ζ )r cos(φ − θ ) + b(k, ζ ) [z ± c1(k, ζ )t] , (4.9)

c1(k, ζ ) = c
√

1 + [α0(k, ζ )/b(k, ζ )]2, (4.10)

α0(k, ζ ), b(k, ζ ), A(θ ), T (k), and D(ζ ) are well-behaved functions, and θ , k, and
ζ are free parameters. If c1(k, ζ ) is real and is not a function of k and ζ, respec-
tively, �ζ (s) and �K (s) are families of limited-diffraction solutions to the wave
equation (4.3).

The following function is also a family of limited-diffraction solution to the wave
equation [42,124]:

�L (r, φ, z − ct) = �1(r, φ)�2(z − ct), (4.11)

where �2(z − ct) is any well-behaved function of z − ct and �1(r, φ) is a solution
to the transverse Laplace equation:[

1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2

∂2

∂φ2

]
�1(r, φ) = 0. (4.12)

If T (k) = δ(k − k ′), f (s) = es , α0(k, ζ ) = −iα, and b(k, ζ ) = iβ in (4.7) and
(4.9), we have

�ζ (s) =
[

1

2π

∫ π

−π

A(θ )e−iαr cos(φ−θ ) dθ

]
ei(βz−ωt), (4.13)

where β = √
k ′2 − α2 is the propagation parameter, δ(k − k ′) is the Dirac delta

function, k ′ = ω/c > 0 is the wave number, and ω is the angular frequency. If
A(θ ) = i neinθ , one obtains an nth-order Bessel beam [2–4,15–17]:

�Bn (�r , t) = �Bn (r, φ, z − c1t)

= einφ Jn(αr )ei(βz−ωt), n = 0, 1, 2, . . . , (4.14)
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where the subscript Bn represents an nth-order Bessel beam, α is a scaling parameter,
Jn(·) is an nth-order Bessel function of the first kind, and c1 = ω/β is the phase
velocity of the wave. It is clear that Bessel beams are single-frequency waves and are
localized in the transverse direction. The scaling parameter, α, determines the degree
of localization. Because of this property, Bessel beams can be applied to medical
ultrasonic imaging [15–21]. Bessel beams are studied further [22–30] along with the
studies of acoustic transducers and ultrasound waves [132–135].

4.2.2 Nonlinear Bessel Beams

In medical imaging, nonlinear properties are important to provide additional infor-
mation on diseased tissues. Harmonics of Bessel beams due to the tissue nonlinearity
are useful to obtain higher-quality images by combining the localized properties of
limited-diffraction beams [22,23].

4.2.3 Frozen Waves

It is clear from (4.14) that single-frequency Bessel beams have two free parameters.
One is the order of the Bessel function, and the other is the scaling parameter that
changes the phase velocity of the Bessel beams. The order of the Bessel beams, n, in
(4.14) has been exploited to produce various limited-diffraction beams of different
transverse beam profiles since 1995 [29,30]. Another parameter, the scaling parameter,
α, in (4.14), has also been used for a linear superposition of Bessel beams to produce
a beam of a desired axial profile [24–27] for zeroth-order Bessel beams. Although
an annular array was used in the production of superposed Bessel beams in these
studies, the number of annuli and the width of each ring are free to change. When the
number of annuli approaches infinity and the width of each ring shrinks to zero with
a given circular aperture, the field distribution at the surface of the annular array is in
fact a continuous function. In a more general way, one could use X-wave transform
[28,46,47] to produce a wave whose shape would be close to the shape desired under
conditions such as the least-squares criterion [136] by changing both the order of the
beams and the scaling parameter.

In 2004, Zamboni-Rached developed an analytical relationship between the scaling
parameter of Bessel beams and the axial beam profile along the beam axis (r = 0) for
the zeroth-order Bessel beams. The resulting linear superposition of Bessel beams
of different scaling parameter, α, was called frozen waves [137]. The method was
extended to include superposition over both the scaling parameter and the order of the
Bessel beams [138] to better control the transverse beam profile of the frozen waves.
These studies not only provide computationally efficient ways for beam designs but
may also have applications in optical tweezers [139].

4.2.4 X-Waves

If T (k) = B(k)e−a0k , A(θ ) = i neinθ , α0(k, ζ ) = −ik sin ζ , b(k, ζ ) = ik cos ζ , and
f (s) = es , one obtains an nth-order X-wave [41–53], which is a superposition of
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limited-diffraction portion of axicon beams [140,141]:

�Xn (�r , t) = �Xn (r, φ, z − c1t)

= einφ

∫ ∞

0
B(k)Jn(kr sin ζ )e−k[a0−i cos ζ (z−c1t)] dk, n = 0, 1, 2, . . . ,

(4.15)

where the subscript Xn represents an nth-order X-wave, c1 = c/ cos ζ ≥ c is both the
phase and group velocity of the wave, |ζ | < π/2 is the axicon angle [141,142], a0 is
a positive free parameter that determines the decaying speed of the high-frequency
components of the wave, and B(k) is an arbitrary well-behaved transfer function of
a device (acoustic transducer or electromagnetic antenna) that produces the wave.
Comparing (4.15) with (4.14), it is easy to see the similarity and difference between a
Bessel beam and an X-wave. X-waves are multiple-frequency waves, whereas Bessel
beams have a single frequency. However, both waves have the same limited-diffraction
property (i.e., they are propagation invariant). Because of multiple frequencies, X-
waves can be localized in both transverse space and time to form a tight wave packet.
They can propagate in free space or isotropic/homogeneous media without spreading
or dispersion. Choosing specific B(k), one can obtain analytical X-wave solutions
[41–43]. One example is the zeroth-order [n = 0 and B(k) = a0] X-wave [42]:

�X0 (�r , t) = �X0 (r, φ, z − c1t)

=
∫ ∞

0
a0 J0(kr sin ζ )e−k[a0−i cos ζ (z−c1t)] dk (4.16)

= a0√
(r sin ζ )2 + [a0 − i cos ζ (z − c1t)]2

.

4.2.5 Obtaining Limited-Diffraction Beams with Variable Transformation

If �N−1(�rN−1, t) is a solution to the (N−1)-dimensional isotropic/homogeneous wave
equation, one can always obtain a limited-diffraction solution, �N (�rN , t), to the N-
dimensional wave equation [see (4.1)] with the following variable substitutions [44]:

�rN−1 sin ζ → �rN−1

xN cos ζ

c
− t → t

or
�rN−1 sin ζ → �rN−1

t − xN cos ζ

c
→ t,

(4.17)

where �rN−1 = (x1, x2, . . . , xN−1), �rN = (x1, x2, . . . , xN ), N ≥ 2 is an integer, and
|ζ | < π/2 is the axicon angle [141,142] [for N = 1, �N−1(�rN−1, t) = �0(t) is a
vibration and not a wave; in this case, (4.17) and the procedure above work only
when ζ = 0]. Because xN cos ζ/c − t appears as a single variable in the equation

�N (�rN , t) = �N (�rN−1, xN − c1t) = �N−1(�rN−1 sin ζ, xN cos ζ/c − t), (4.18)
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�N (�rN , t) is a limited-diffraction beam propagating along the axis, xN . As shown in
[57,58], (4.17) is related to part of the Lorentz transformation (missing the transfor-
mation on xN ) after dividing all variables by the same constant, sin ζ :

�rn−1 → �rn−1

t

sin ζ
− xn cos ζ

c sin ζ
= 1

sin ζ

(
t − xn cos ζ

c

)
= γ

(
t − β

c
xn

)
→ t, (4.19)

where β = cos ζ = v/c and γ = 1/sin ζ = 1/
√

1 − β2, and where 0 ≤ v < c is
the velocity of the moving coordinates (observer) along the axis, xN . Contrary
to the report in [57,58], if �N−1(�rN−1, t) is a solution to the (N−1)-dimensional
isotropic/homogeneous wave equation, �N (�rN , t) will not be a solution to the N-
dimensional wave equation (4.1) with the partial Lorentz transformation (4.19).
Equation (17) has also been used in [59,60] to derive limited-diffraction beams in
waveguides.

4.2.6 Limited-Diffraction Solutions to the Klein–Gordon Equation

An N-dimensional Klein–Gordon equation for a free relativistic particle is given by
[143]: (

N∑
j=1

∂2

∂x2
j

− 1

c2

∂2

∂t2
− m2c2

h- 2

)
�N (�rN , t) = 0, (4.20)

where x j ( j = 1, 2, . . . , N ) represents rectangular coordinates in an N-dimensional
space; N ≥ 1 is an integer; �N (�rN , t) is a scalar wave function of spatial variables
�rN = (x1, x2, . . . , xN ) and time t ; c is the speed of light in vacuum; h- = h/2π , where
h is the Planck constant; m = m ′ sin ζ is the mass of the particle at rest, where m ′ is
a mass-related constant; and |ζ | < π/2 is the axicon angle [141,142].

Assuming that �N−1(�rN−1, t) is a solution to the following (N−1)-dimensional
Klein–Gordon equation with a mass m ′ [143]:(

N−1∑
j=1

∂2

∂x2
j

− 1

c2

∂2

∂t2
− m ′2c2

h- 2

)
�N−1(�rN−1, t) = 0, (4.21)

where �rN−1 = (x1, x2, . . . , xN−1); (4.18) is a solution to (4.20) after the variable
substitution (4.17). This can be proved easily in a manner similar to that described in
[44]. Using (4.18) and (4.21), we have(

N−1∑
j=1

∂2

∂x2
j

)
�N−1

(
�rN−1 sin ζ,

xN cos ζ

c
− t

)
= sin2 ζ

(
1

c2

∂2

∂t2
+ m ′2c2

h- 2

)
�N−1

(
�rN−1 sin ζ,

xN cos ζ

c
− t

)
(4.22)
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and

∂2

∂x2
N

�N−1

(
�rN−1 sin ζ,

xN cos ζ

c
− t

)

= cos2 ζ

c2

∂2

∂t2
�N−1

(
�rN−1 sin ζ,

xN cos ζ

c
− t

)
. (4.23)

Summing both the left- and right-hand sides of (4.22) and (4.23), and comparing the
results with (4.20), it is clear that (4.18) is a solution to (4.20). Limited-diffraction
solutions to the Klein–Gordon equation mean that a free relativistic particle may be
accompanied by a rigidly propagating wave along the axis, xN , at a velocity that is
greater than the speed of light in vacuum in a manner similar to that of X-waves
[41–43] (for ζ �= 0). If |ζ | → π/2, the wave speed c1 = c/cos ζ → ∞ and then one
has m ′ → m. For photons where m = 0, (4.22) and (4.23) are the same as those in
[44]. It is worth noting that from the proofs in (4.22) and (4.23) and in [44], it is
clear that the functions sin ζ and cos ζ in (4.17) can be other functions as long as the
summation of the squares of those functions is equal to 1: f 2

1 (ζ ) + f 2
2 (ζ ) ≡ 1, where

f1(ζ ) and f2(ζ ) are any well-behaved functions of ζ or other free parameters. This
extends the transformation formula in (4.17).

In the following we obtain some localized limited-diffraction solutions to the
Klein–Gordon equation. Assuming that f (s) = es in (4.4), where s is given by (4.5),
and inserting (4.4) into (4.20), one obtains the velocity of the wave:

c1 = c

√√√√(∑N

j=1
D2

j − m2c2/h- 2
)

D2
N

. (4.24)

If N = 3, x1 = x , x2 = y, and x3 = z, (4.24) becomes

c1 = c

√(
D2

1 + D2
2 + D2

3 − m2c2/h- 2
)

D2
3

. (4.25)

Choosing D1 = α0 cos θ and D2 = α0 sin θ , where −π ≤ θ ≤ π is a free parameter
and α0 is a well-behaved function of any free parameters, if α0 = −imc/h- sin ζ , one
obtains

D3 = i
mc

h-

⎛⎝
√

1 − (h- /mc)2α2
0√

(c1/c)2 − 1

⎞⎠ = i
mc

h-

√
1 + sin2 ζ√

(c1/c)2 − 1
. (4.26)
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Since es in (4.4) is a solution to the Klein–Gordon equation (4.20), a linear super-
position over the free parameter, θ , is still a solution:

�KG
Bn

(�r , t) = 1

2π

∫ π

−π

A(θ )es dθ

= einφ Jn

(
mc

h-
r sin ζ

)
exp

[
i
mc

h-

( √
1 + sin2 ζ√

(c1/c)2 − 1

)
(z − c1t)

]
,

(n = 0, 1, 2, . . .), (4.27)

where the subscript Bn and the superscript KG represent an nth-order Bessel beam and
the Klein–Gordon equation, respectively, and i(mc/h- )(

√
1 + sin2 ζ/

√
(c1/c)2 − 1)

is the propagation constant. Equation (4.27) is a localized solution to (4.20) and its
localization increases with the mass, m. For electrons at rest, m = 9.1 × 10−31 kg, and
thus mc/h- = 2.6 × 1012 m−1 (h- = 1.05 × 10−34 J · s and c = 3.0 × 108 m/s). The
wave in (4.27) is localized in picometer scale if sin ζ ≈ 1. There are other choices of
α0. If α0 is a constant, a localized limited-diffraction solution that has a fixed transverse
beam profile can be obtained. If α0 = −i(γ mv/h- ) sin ζ , where γ = 1/

√
1 − β2 and

β = v/c, and where v is the velocity of the particle, the transverse localization of the
solutions will increase with the speed of the particle. In this case, the propagation
constant is given by i(mc/h- )(

√
1 + (γ v/c)2 sin2 ζ/

√
(c1/c)2 − 1).

Superposing �KG
Bn

(�r , t) in (4.27) over the mass, m, one obtains a composed wave
function that is similar to the X-wave [41–53] but may not necessarily be a solution
to (4.20) where m is a constant for a given particle (the physical meaning could be
a group of independent particles of different masses traveling in space). Using (4.7)
and (4.27), and letting T (k) = B(k)e−a0k , where k = mc/h- , one obtains

�KG
Xn

(�r , t) = �KG
Xn

(r, φ, z − c1t)

= c

h-
einφ

∫ ∞

0
B

(
mc

h-

)
Jn

(
mc

h-
r sin ζ

)
× exp

{
mc

h-

[
a0 − i

(√
1 + sin2 ζ/

√
(c1/c)2 − 1

)
(z − c1t)

]}
dm,

n = 0, 1, 2, . . . , (4.28)

where the subscript Xn represents an nth-order X-wave and the superscript KG the
Klein–Gordon equation, a0 is a positive free parameter, and B(k) is an arbitrary well-
behaved transfer function. If n = 0 and B(k) = a0, from (4.28) and (4.16) one has
(where c1 is a constant) [42]

�KG
X0

(�r , t) = �KG
X0

(r, φ, z − c1t)

= a0√
(r sin ζ )2 +

[
a0 − i

(√
1 + sin2 ζ/

√
(c1/c)2 − 1

)
(z − c1t)

]2
.

(4.29)
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It is clear from (4.26)–(4.29) that if c1 < c, the solutions or functions are no longer
waves. If c1 = c, D3 in (4.26) is infinity. For c1 > c, one obtains rigidly propagating
superluminal waves or functions, as in the case of X-waves [42]. One example is
to assume that c1 = c/ cos ζ , as given in (4.17) [44]. A superposition that is similar
to (4.28) can also be done over the velocity, v, instead of the mass, m, of a particle
if, say, α0 = −i(γ mv/h- ) sin ζ . In this case, the superposition is a limited-diffraction
solution to the Klein–Gordon equation (4.20).

4.2.7 Limited-Diffraction Solutions to the Schrödinger Equation

The general nonrelativistic, time-dependent, and three-dimensional Schrödinger wave
equation for multiple particles is given by (see, e.g., [144])

−
M∑

j=1

h- 2

2m j
∇2

j � + V � = ih-
∂�

∂t
, (4.30)

where � = �(x1, x2, x3; . . . ; x3M−2, x3M−1, x3M ; t) is the wave function (re-
lated to the probability of finding particles in space and time) and V =
V (x1, x2, x3; . . . ; x3M−2, x3M−1, x3M ; t) is the potential of the system. � and V are
determined by all the particles and their interactions. ∇2

j is the Laplace in terms of the
position of the j th particle in space, �r j = (x3 j−2, x3 j−1, x3 j ), where j = 1, 2, . . . , M
(M is an integer) and m j is the mass at rest of the j th particle. Assuming that V is
not a function of spatial variables and time, and �(s) = es , where s is given by (4.5),
one obtains [54]

c1 =
∑M

j=1 (−h- 2/2m j )
(
D2

3 j−2 + D2
3 j−1 + D2

3 j

) + V

−ih- D3M
. (4.31)

If M = 1, x1 = x , x2 = y, x3 = z, m1 = m, D1 = α0 cos θ , and D2 = α0 sin θ , where
|ζ | < π/2 is an axicon angle, −π ≤ θ ≤ π is a free parameter, and α0 is a well-
behaved function of any free parameters, (4.31) is simplified [54] as

c1 = (−h- 2/2m)
(
α2

0 + D2
3

) + V

−ih- D3
. (4.32)

If V = 0 and α0 = −i (mc/h- ) sin ζ , one has

D3 =

⎧⎪⎪⎨⎪⎪⎩
i

mc

h-

(
c1

c
±

√(c1

c

)2
+ h- 2

m2c2
α2

0

)
= i

mc

h-

(
c1

c
±

√(c1

c

)2
− sin2 ζ

)
, α0 �= 0

i · 2
mc

h-
c1

c
, α0 = 0.

(4.33)
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Following the steps to obtain (4.27), one obtains a localized solution to the
Schrödinger equation in (4.30) under the conditions leading to (4.33) [54]:

�S
Bn

(�r , t) = 1

2π

∫ π

−π

A(θ )es dθ

= einφ Jn

(
mc

h-
r sin ζ

)
exp

[
i
mc

h-

(
c1/c ±

√
(c1/c)2 − sin2 ζ

)
(z − c1t)

]
,

n = 0, 1, 2, . . . , (4.34)

where the subscript Bn and the superscript S represent an nth-order Bessel beam
and the Schrödinger equation, respectively, and i(mc/h- )(c1/c ±

√
(c1/c)2 − sin2 ζ )

is the propagation constant. Similar to the Klein–Gordon equation [see the text below
(4.27)], one can select α0 = constant, α0 = −i(γ mv/h- ) sin ζ , or other functions to
obtain more limited-diffraction beams [the corresponding D3 can be obtained easily
by inserting different α0 into (4.33)].

Following the derivations of (4.28) and substituting (mc/h- )(
√

1 + sin2 ζ/√
(c1/c)2 − 1) with (mc/h- )(c1/c ±

√
(c1/c)2 − sin2 ζ ), one obtains a function that

is similar to the X-wave [41–53] but may not necessarily be a solution to (4.30)
(the physical meaning could be a group of independent particles of different masses
traveling in space):

�S
Xn

(�r , t) = �S
Xn

(r, φ, z − c1t)

= c

h-
einφ

∫ ∞

0
B

(
mc

h-

)
Jn

(
mc

h-
r sin ζ

)
× exp

{
−mc

h-

[
a0 − i

(
c1/c ±

√
(c1/c)2 − sin2 ζ

)
(z − c1t)

]}
dm,

n = 0, 1, 2, . . . , (4.35)

where the subscript Xn represents an nth-order X-wave and the superscript S repre-
sents the Schrödinger equation, a0 is a positive free parameter, and B(k) is an arbitrary
well-behaved transfer function. If n = 0 and B(k) = a0, from (4.35) and (4.16), one
obtains (where c1 is a constant) [42]

�S
X0

(�r , t) = �S
X0

(r, φ, z − c1t)

= a0√
(r sin ζ )2 +

[
a0 − i

(
c1/c ±

√
(c1/c)2 − sin2 ζ

)
(z − c1t)

]2
. (4.36)

In (4.33–4.36), if (c1/c)2 − sin2ζ < 0, the solutions or functions are unbounded
for some z or t and may not be of interest. If (c1/c)2 − sin2ζ ≥ 0, one obtains limited-
diffraction solutions or functions [42]. One example is to assume that c1 = c/ cos ζ ,
as given in (4.17) [44]. A superposition that is similar to (4.35) can also be done over
the velocity, v, instead of the mass, m, of a particle if, say, α0 = −i(γ mv/h- ) sin ζ .
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In this case, the superposition is a limited-diffraction solution to the Schrödinger
equation (4.30).

4.2.8 Electromagnetic X-Waves

The free-space Maxwell’s equations are given by [145]

∇ × �E = −μ0
∂ �H
∂t

∇ · �E = 0

∇ × �H = ε0
∂ �E
∂t

∇ · �H = 0,

(4.37)

where �E is the electric field strength, �H is the magnetic field strength, ε0 is the dielec-
tric constant of free space (ε0 ≈ π/36 × 10−9 F/m), μ0 is the magnetic permeability
of free space (μ0 = 4π × 10−7H/m), and t is the time.

Because of the third equation (∇ · �E = 0) of (4.37), the electric field strength can
be written [54,146]

�E = −μ0
∂

∂t
∇ × �∏

m
, (4.38)

where �∏
m = ��n0 is a magnetic Hertz vector potential with transverse electrical (TE)

polarization, where � is a scalar function and �n0 represents a unit vector. Inserting
(4.38) into the first equation of (4.37), one obtains

�H = ∇ ×
(
∇ × �∏

m

)
. (4.39)

From (4.37–4.39), one obtains the vector wave equation

∇2 �∏
m

− 1

c2

∂2 �∏
m

∂t2
= 0. (4.40)

Letting �n0 = �z0 , where �z0 is a unit vector along the z-axis, and using cylindrical
coordinates from (4.38) and (4.39) we obtain

�E = −μ0
1

r

∂2�

∂t ∂φ
�r0 + μ0

∂2�

∂t ∂r
�φ0 (4.41)

and

�H = ∂2�

∂r ∂z
�r0 + 1

r

∂2�

∂φ ∂z
�φ0 +

(
∂2�

∂z2
− 1

c2

∂2�

∂t2

)
�z0, (4.42)

respectively, where � is a solution to the free-space scalar wave equation (4.2), and
where �r0 and �φ0 are the unit vectors along the variables r and φ, respectively. Once
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a solution to (4.2) is found, the electrical field strength, �E , and the magnetic field
strength, �H , can be obtained from Eqs. (4.41) and (4.42), respectively.

If � is an nth-order broadband X-wave solution or a general X-wave solution [see
(4.15)] to (4.2), the components of �E and �H are also X-wave functions [54]. From
the �E and �H expressions, the Poynting energy flux vector and the energy density can
be derived [54]. Solutions to �E and �H obtained this way will be limited-diffraction
solutions to Maxwell’s equations in (4.37) [54].

4.2.9 Limited-Diffraction Beams in Confined Spaces

Limited-diffraction beams in confined spaces are of interest [59,60,147]. Previously,
Shaarawi et al. [148] and Ziolkowski et al. [149] have shown that localized waves
such as focused wave modes and modified power spectrum pulses can also propagate
in waveguides for an extended propagation depth. In the following, theoretical results
of X-waves propagating in a confined space such as a waveguide are developed for
acoustics, electromagnetics, and quantum mechanics [147].

1. Acoustic waves. Assuming that � in (4.2) represents acoustic pressure in an
infinitely long cylindrical acoustical waveguide (radius a), which is filled with an
isotropic/homogeneous lossless fluid medium enclosed in an infinitely rigid boundary,
the normal vibration velocity of the medium at the wall of the cylindrical waveguide
is zero for all the frequency components of the X-waves [i.e., ∂�Xn (�r , t ; ω)/∂r ≡ 0,
∀ω ≥ 0 at r = a, where �Xn (�r , t ; ω) is the X-wave component at angular frequency
ω; see (4.15)]. To meet this boundary condition, the parameter k in (4.15) is quantized:

knj = μnj

a sin ζ
, n, j = 0, 1, 2, . . . , (4.43)

where μnj are the roots of the equations

J1(x) = 0, n = 0

Jn−1(x) = Jn+1(x), n = 1, 2, . . ..
(4.44)

Thus, the integral in (4.15) can be changed to a series representing frequency-
quantized X-waves [147]:

�Xn (�r , t) = einφ
∞∑
j=0

�knj B(knj )Jn(knjr sin ζ )e−knj [a0−i cos ζ (z−c1t)], r ≤ a,

n = 0, 1, 2, . . . , (4.45)

where �kn0 = kn1 and �knj = knj+1 − knj ( j = 1, 2, 3, . . .). Unlike conventional
guided waves, frequency-quantized X-waves contain multiple frequencies and prop-
agate through waveguides at the speed of c1 without dispersion, and similar results
can be obtained for waveguides of other homogeneous boundary conditions. For an
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FIGURE 4.1 Envelope-detected zeroth-order X-wave in a 50 mm-diameter rigid acous-
tic waveguide. The waves shown has an axicon angle of 4◦ and a0 = 0.05 mm. (a) and (c)
Bandlimited version with a Blackman window function centered at 3.5 MHz with about
81% of fractional −6 dB bandwidth. (b) and (d) are broadband versions. The images in
the top row are on a linear scale and those in the bottom row are of log scale, to show the
sidelobes.

infinitely long cylindrical acoustical waveguide consisting of isotropic/homogeneous
lossless media in a free space (vacuum) with radius a, the acoustical pressure is zero
at the boundary of the waveguide, r = a [ i.e., μnj (n, j = 1, 2, 3, . . .) in (4.43) are
roots of Jn(x) = 0 ( j = 1, 2, . . .)]. See Figs. 4.1 to 4.3 for examples of X-waves in
an acoustic waveguide [147].

It is clear that if n = 0, (4.45) represents an axially symmetric frequency-quantized
X-wave. If a → ∞, �knj → 0 and the summation in (4.45) becomes an integration
that represents the X-waves in (4.15). On the other hand, if a → 0, both knj and
�knj → ∞ (n, j = 0, 1, 2, . . .). This means that for a small waveguide, only high-
frequency-quantized X-waves can propagate through it.

2. Electromagnetic waves. The free-space vector wave equations from the free-
space Maxwell’s equations (4.37) are given by [150]

∇2 �E − 1

c2

∂2 �E
∂t2

= 0 (4.46)
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FIGURE 4.2 The same as those in Fig. 4.1 except that the images are zoomed horizontally
around the center.

and

∇2 �H − 1

c2

∂2 �H
∂t2

= 0. (4.47)

A solution to (4.46) can be written as

�E(�r , t) = �E⊥(r, φ)eγ z−iωt , (4.48)

where γ = iβ is a propagation constant, β = √
k2 − k2

c > 0 (for propagation waves),
k = ω/c is the wave number, and �E⊥(r, φ) is a solution of the transverse vector
Helmholtz equation:

∇2
⊥ �E⊥(r, φ) + k2

c
�E⊥(r, φ) = 0, (4.49)

where ∇2
⊥ is the transverse Laplace operator and kc is a parameter that is independent

of r, φ, z, and t . For transverse magnetic (TM) waves, �E⊥(r, φ) = Ez(r, φ)�z0 and
(4.49) becomes a scalar Helmholtz equation of Ez(r, φ), where �z0 is a unit vector
along the z-axis.
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FIGURE 4.3 Transverse [(1) and (3)] and axial [(2) and (4)] sidelobe plots of the images
in Fig. 4.1 [(1) and (2)] and Fig. 4.2 [(3) and (4)], respectively. Solid and dotted lines are for
bandlimited and broadband cases, respectively.
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If kc = k sin ζ , where |ζ | < π/2 is a constant, after taking into consideration the
exponential term in (4.48) and integrating the solution of (4.49) from 0 to ∞over k, one
obtains an nth-order X-wave solution [replace the symbol, �Xn (�r , t), in (4.15) with
EznX (�r , t), where the subscript X indicates an X-wave]. Assuming that electromagnetic
X-waves travel in vacuum in a totally conductive cylindrical waveguide of a radius, a
[i.e., EznX (�r , t) ≡ 0 at r = a], similar to the frequency quantization procedure of the
acoustic case (4.45), one obtains [147]

EznX (�r , t) = einφ
∞∑
j=0

�knj B(knj )Jn(knjr sin ζ )e−knj [a0−i cos ζ (z−c1t)], r ≤ a,

n = 0, 1, 2, . . . , (4.50)

where the knj (n, j = 0, 1, 2, . . .) are given by (4.43) and the μnj (n, j = 0, 1, 2, . . .)
in (4.43) are roots of Jn(x) = 0 (n = 0, 1, 2, . . .). Other components of �E and �H can
be derived from Ez(�r , t) using the free-space Maxwell’s equations (4.37). They will
have the same speed, c1, as Ez . For transverse electric (TE) waves, the results are
similar.

3. DeBroglie waves. With a finite transverse spatial extension (such as a free
particle passing through a hole with a finite aperture), the function �KG

Xn
(�r , t) in (4.28)

or �S
Xn

(�r , t) in (4.35) would change (spread or diffract) after certain distance behind
the hole. However, in cases such as particles passing through a pipe, �KG

Xn
(�r , t) and

�S
Xn

(�r , t) need to meet the boundary conditions that they are zero on the wall of the
pipe. This gives the following quantized X-wave functions corresponding to (4.28)
and (4.35), respectively [147]:

�KG
Xn

(�r , t) = einφ
∞∑
j=0

�knj B(knj )Jn(knjr sin ζ )e
−knj

[
a0−i

(√
1+sin2 ζ/

√
(c1/c)2−1

)
(z−c1t)

]
,

r ≤ a, n = 0, 1, 2, . . . , (4.51)

and

�S
Xn

(�r , t) = einφ
∞∑
j=0

�knj B(knj )Jn(knjr sin ζ )e
−knj

[
a0−i

(
c1/c±

√
(c1/c)2−sin2 ζ

)
(z−c1t)

]
,

r ≤ a, n = 0, 1, 2, . . . , (4.52)

where knj = mnj c/h- (n, j = 0, 1, 2, . . .) are given by (4.43) and μnj (n, j =
0, 1, 2, . . .) in (4.43) are roots of Jn(x) = 0 (n = 0, 1, 2, . . .). Equations (4.51) and
(4.52) represent particles in a confined space with their quantized de Broglie’s waves.
The quantization may only allow particles of a certain mass to pass through the pipe
(waveguide). As mentioned in the text below (4.27) and (4.34), the free parameter
α0 can be chosen differently. If α0 = −i(γ mv/h- ) sin ζ , the quantization in (4.51)
and (4.52) may be modified for summation over the velocity v, instead of m, of the
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particles. In this case, only particles with certain velocities are allowed to pass through
the pipe or a small nanotube.

There are other implications of the studies above. As we know, light in free space
behaves like a wave but acts as particles (photons) when interacting with materials.
Some microscopic structures of materials could be considered as optical waveguides
within which the light waves are confined. From our discussion above of X-waves in
confined spaces, it is understood that only light waves that have a higher energy (or
frequency) can penetrate these materials or cause interactions.

4.2.10 X-Wave Transformation

Because X-waves are orthogonal [61], similar to plane waves, any physically real-
izable waves or well-behaved solutions to the wave equation can be expressed as
a linear superposition of X-waves (inverse X-wave transform), and the coefficients
of the superposition can be determined (forward X-wave transform), [46,47]. The
inverse X-wave transform is given by (Eq. (4.15) of [46])

�(�r , t) =
∞∑

n=−∞

∫ π/2

0
dζ

∫ ∞

0
dkTn,ζ (k)�An,k,ζ

(r, φ, z − c1t)

=
∞∑

n=−∞

∫ π/2

0

[
einφ

∫ ∞

0
Tn,ζ (k)Jn(kr sin ζ )eik cos ζ (z−c1t) dk

]
dζ

=
∞∑

n=−∞

∫ π/2

0
�Xn,ζ

(r, φ, z − c1t) dζ, (4.53)

where

Tn,ζ (k) = Bn,ζ (k)e−ka0 (4.54)

and

�An,k,ζ
(r, φ, z − c1t) = einφ Jn(kr sin ζ )eik cos ζ (z−c1t), (4.55)

where c1 = c/cosζ and |ζ | < π/2.
The forward X-wave transform can be used to determine the coefficients

(Eq. (4.26) of [46]):

Tn,ζ (k) = k2c sin ζcosζ H (k)

(2π )2

×
∫ ∞

0
rdr

∫ π

−π

dφ

∫ ∞

−∞
dt�(r, φ, z, t)�∗

An,k,ζ
(r, φ, z − c1t), (4.56)
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where

�∗
An,k,ζ

(r, φ, z − c1t) = e−inφ Jn(kr sin ζ )e−ik cos ζ (z−c1t) (4.57)

is a complex conjugate of �An,k,ζ
(r, φ, z − c1t) and H (k) is the Heaviside step function

[151]:

H (k) =
{

1, k ≥ 0
0, otherwise.

(4.58)

H (k) is used to indicate that k is positive and thus can be placed on either side of (56).

4.2.11 Bowtie Limited-Diffraction Beams

If �N (�rN , t) = �N (�rN−1, xN − c1t) is a limited-diffraction solution to the isotropic/
homogeneous wave equation (4.1), the Klein–Gordon equation (4.20), or the
Schrödinger equation (4.30) (assuming that V is not a function of the correspond-
ing component of �rN−1), where �rN = (x1, x2, . . . , xN ), �rN−1 = (x1, x2, . . . , xN−1),
N is an integer, and c1 is the speed of the wave, any partial derivatives of
�N (�rN−1, xN − c1t) along any component of �rN−1 are still limited-diffraction solu-
tions to these equations [152–156]. These solutions are called bowtie beams because
their transverse beam shapes are similar to the shape of a bowtie. These beams may
have applications in medical imaging of a lower sidelobe because one part of the
sidelobe of a transmission beam may be used to cancel the other part of the sidelobe
of a reception beam [152–156]. [Note that the following properties are also true. Any
partial derivatives of a limited-diffraction solution, �N (�rN−1, xN − c1t), in terms of
the time t will also be a limited-diffraction solution to (4.1), (4.20), and (4.30), re-
spectively. One example is the second derivative X-wave in terms of time given in
[44]. Replacing t with −t in �N (�rN−1, xN − c1t), one obtains a time-reversal mirror
limited-diffraction wave propagating in a backward direction along xN .]

4.2.12 Limited-Diffraction Array Beams

If the partial derivatives are carried out on more than one component of �rN−1 =
(x1, x2, . . . , xN−1) for �N (�rN , t) = �N (�rN−1, xN − c1t), limited-diffraction grid or
layered array beams may be produced for equations (4.1), (4.20), and (4.30) (assuming
that V is not a function of the corresponding components of �rN−1) [157–160]. Array
beams may have applications to three-dimensional imaging [157], blood-flow velocity
measurements [158], and high-frame-rate imaging [62,63,79–85].

4.2.13 Computation with Limited-Diffraction Beams

Efficient computation of limited-diffraction beams produced by a finite aperture is
important for understanding the properties of these beams. A Fourier–Bessel method



JWDD074-c04 JWDD074-Hernandez December 5, 2007 5:32 Char Count= 0

116 ULTRASONIC IMAGING WITH LIMITED-DIFFRACTION BEAMS

[24–28] has been used to calculate arbitrary waves of axial symmetry. Limited-
diffraction array beams [157–160] have been used for efficient computation of waves
produced by a two-dimensional array transducer [159,160]. Angular spectrum decom-
position has been used for the study [161], and various methods have been investigated
[162].

4.3 APPLICATIONS OF LIMITED-DIFFRACTION BEAMS

4.3.1 Medical Ultrasound Imaging

Limited-diffraction beams are localized waves and are, in theory, propagation invari-
ant. In practice, because the dimension of wave sources is always finite, these waves
will eventually diffract. However, these waves have a large depth of field, meaning
that they will propagate over a large distance without spreading. This property is
useful in medical ultrasound imaging, where an extended depth of focus is needed
to provide clear images over the entire depth of interest within the thickness of the
human body. Studies on this subject have been reported in the literature (e.g., [15–17,
163–168]).

4.3.2 Tissue Characterization (Identification)

Due to the large depth of field of limited-diffraction beams, these beams may be used
for tissue characterization (identification) [169–171]. For example, different tissues
have different attenuations on ultrasound waves. If the waves diffract as they propa-
gate, such as conventional focused waves, one has to compensate for the diffraction
effects of the waves in the estimation of tissue attenuation. The compensation process
could be computationally intensive and tedious. An example of tissue characterization
with limited-diffraction beams is given in [171].

4.3.3 High-Frame-Rate Imaging

High-frame-rate two- and three-dimensional ultrasound imaging is important for vi-
sualizing fast-moving objects such as the heart. Based on our previous studies of
ultrasound diffraction tomography [172–176] and limited-diffraction beams such as
X-waves [41–53], we have developed the high-frame-rate imaging method [62–88].
Recently, the method has been extended to include steered plane wave and limited-
diffraction array-beam transmissions [79–85].

4.3.4 Two-Way Dynamic Focusing

A two-way dynamic focusing method was developed by transmitting limited-
diffraction array beams and receiving ultrasound echo signals with array beam weight-
ings of the same parameters. This method increases the image field of view and image
resolution due to enlarged coverage of spatial Fourier domain [177].
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4.3.5 Medical Blood-Flow Measurements

Blood-flow velocity measurements and imaging are important for medical diagnoses
[178–179]. However, with the conventional Doppler method, only flow velocity that is
along the ultrasound beam can be measured. To measure the velocity vector, velocity
components along and transverse to the beam are both needed. Limited-diffraction
beams may help to measure the transverse component of the velocity more accurately,
due to their spatial modulation properties [158,180,181].

4.3.6 Nondestructive Evaluation of Materials

Nondestructive evaluation (NDE) is important for many applications, such as finding
defects in aircraft engines with ultrasound without slicing them apart or destroying
them. Similar to medical imaging, limited-diffraction beams can also be applied
to NDE on various industrial materials by getting images of a large depth of field
[182,183].

4.3.7 Optical Coherent Tomography

Optical coherent tomography (OCT) uses the same principle of conventional ultra-
sound pulse-echo imaging. It is able to obtain microscopic images of a cross section
along an optical beam. Similar to ultrasound imaging, limited-diffraction beams can
be used to increase the depth of field of OCT [184].

4.3.8 Optical Communications

Limited-diffraction beams such as X-waves [41–43] are orthogonal in space. Because
of this property, signals such as television programs in different channels can be sent
over the same space from the same channel (carrier frequency). Limited-diffraction
beams have been exploited to increase the capacity in communications using the
property of their spatial orthogonality [185–186].

4.3.9 Reduction of Sidelobes in Medical Imaging

Limited-diffraction beams can maintain high resolution in medical imaging over a
large depth of field. However, compared to focused beams at their focuses, limited-
diffraction beams have higher sidelobes. Sidelobes may lower image contrast in ultra-
sound imaging, making the differentiation between benign and malignant tissues dif-
ficult. Various methods have been developed to reduce sidelobes of limited-diffraction
beam in medical imaging [5,187–190].

4.4 CONCLUSIONS

Limited-diffraction beams are a class of waves that may be localized in both space and
time and can propagate rigidly in free space or confined spaces to an infinite distance
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in theory at superluminal speed. Because of the localized property and the fact that
they are solutions to various wave equations, limited-diffraction beams may provide
insight into various physical phenomena and may have theoretical significance. In
addition, limited-diffraction beams can be produced approximately with a finite aper-
ture and energy over a large depth of field, meaning that they can keep a small beam
width over a large distance. This and other properties of limited-diffraction beams
make them suitable for various applications, such as medical imaging, tissue char-
acterization, blood-flow measurement, nondestructive evaluation of materials, and
optical communications.
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