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Abstract— The point spread function (PSF) is often
analyzed to determine the image quality of an ultrasound
system. The formation of PSF is determined by practical
factors, such as transducer aperture, element directivity,
apodization, pitch, imaging position, and steering angle.
Conventional numerical simulations provide an iterative
approach to examine those factors’ effects but cannot
explain the inherent mechanism of PSF formation. This
article presents a theoretical approximation of PSF forma-
tion for plane-wave imaging throughout the Fourier-based
reconstruction process. Aforementioned factors are incor-
porated in the theory. The proposed theory is used to ana-
lyze the effects of those factors and presents a high degree
of consistency with numerical simulations and experiments.

Index Terms— Fourier migration, plane wave, point
spread function (PSF).

I. INTRODUCTION

W ITH the progress of ultrafast ultrasound, imaging at
kilohertz frame rate has enabled new advanced ultra-

sound imaging modes, such as shear-wave elastography [1]
and ultrafast blood flow mapping [2], as supplements to con-
ventional B-mode and Doppler ultrasound. Instead of focusing
ultrasound beams in conventional imaging, ultrafast ultrasound
is realized by transmitting one or a few unfocussed ultrasound
beams, for example plane waves [3], for large-view insonifi-
cation. The benefit of high frame rate is compromised by the
degradation of image quality due to the absence of focusing
in transmission. Although the image quality degradation can
be mitigated by coherent compounding [4], the improvement
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of image quality remains a significant concern when adopting
ultrafast ultrasound imaging.

To assess the image quality of an ultrasound system,
the point spread function (PSF) is often determined, repre-
senting the ultrasound system’s spatial impulse response [5].
The PSF is a combined result of transmit and receive para-
meters and propagation of acoustic waves. Spatial resolution
is usually defined as the full-width at half-maximum of the
PSF along lateral, axial, or elevational direction. Apart from
the spatial resolution, off-axis sidelobes or grating lobes of the
PSF also affect the image contrast [6].

Moreover, PSF plays a central role in restoration methods.
Ideally, an ultrasound image can be regarded as the convolu-
tion between the PSF and an object function [7]. Therefore,
the initial object function can be enhanced by restoring the
image using the PSF [8], [9] to obtain an image of much higher
resolution. However, in practice, this approach is often difficult
to apply successfully, because the mechanism of PSF forma-
tion is complicated, that is known to be influenced by multiple
factors, such as the position of imaging point, transducer
characteristics, beam steering angle, apodization, variation of
speed of sound, phase aberration, and reverberation [10].
Specific image beamforming and reconstruction methods also
have major influences on the PSF formation [11], [12].

The influences of above factors on the PSF’s formation
are often examined using numerical ultrasound simulations
by software packages such as Field II [13] that models
the ultrasound system based on impulse responses [14]. In
Field II, the PSF can be estimated by defining a single
scattering point as the media object. Although computa-
tional simulation can be used to study the PSF, it does not
encompass the image formation process. Thus, the inherent
mechanism of image reconstruction cannot be fully understood
from only the numerical simulation. As an alternative to the
computational simulation, a precise theoretical approximation
of PSF’s formation would be (in principle) more efficient
and can illuminate the mechanism of image reconstruction.
Revealed mechanism of image reconstruction might set a
path for the development of improved image reconstruction
methods. In previous studies, Fraunhofer approximation [15]
is commonly used to estimate the lateral PSF pattern at
the focused point, where waves emitted by the aperture are
synchronized [16]. However, the Fraunhofer approximation
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can only provide limited insights without disclosing PSF’s
axial pattern and the effects of steering transmitting angle and
off-axis displacement.

In recent years, image reconstruction of ultrafast ultrasound
through the Fourier migration has gained attention [17]–[19] as
an alternative for the routinely applied delay-and-sum (DAS)
beamforming that operates in the temporal domain. Image
reconstruction method based on Fourier migration possesses
a convincing advantage of higher computational efficiency
while producing similar image quality [20]. With respect
to plane-wave ultrasound, several studies have explored and
refined the reconstruction of plane-wave ultrasound images
by using Fourier-based methods [21]–[26]. However, those
studies mainly focus on deriving spectrum remapping rela-
tions without an in-depth consideration of the aforementioned
factors. For example, the finite transducer aperture diameter
leads to the PSF’s dependence on spatial position. Element
directivity and apodization mainly shape the lateral profile of
the PSF. The effect of spectrum aliasing related to the element
pitch is still in lack of full understanding. By taking these
factors into account, Fourier-based image reconstruction can
be further improved possibly.

For conventional DAS beamforming, Alberti et al. [27]
conducted a mathematical analysis of plane-wave PSF’s for-
mation using a simplified model without considering the aper-
ture weighting caused by apodization and element directivity.
Roquette et al. [28] also provided a general expression of
the PSF to present the spatially varying feature that can be
analyzed through numerical computation. Different from the
numerical computation, an analytical expression containing
various transducer characteristics and beamforming parame-
ters can provide more valuable insights about the inherent
mechanism of PSF formation. With respect to Fourier-based
beamforming, there is currently no such analytical expression.
Therefore, it is of great importance to derive a comprehensive
theory to understand the process of PSF formation in Fourier
migration reconstruction.

In this study, we will present a theoretical approximation
of PSF’s formation throughout the plane-wave image trans-
mission, reception, and spectrum migration process. Afore-
mentioned factors are incorporated into the theoretical model
to present a specific PSF and its Fourier spectrum. Vali-
dation is conducted by comparing the analytical PSF and
spectrum with outcomes from both Field II simulations and
experiments.

II. METHODOLOGY

The methodology section is composed of three subsections.
In Section II-A, an analytical presentation of the Fourier
spectrum of the wavefront from a scattering point is derived
through stationary phase approximation. The spectrum of the
wavefront can be mapped to the analytical Fourier spectrum of
PSF. Section II-B mainly focuses on analyzing the analytical
spectrum and the PSF pattern. In Section II-C, simulations
and experiments are described, which were used to validate
our theory. Variables and symbols used throughout this article
are listed in Table I.

TABLE I
LIST OF SYMBOLS AND DESCRIPTIONS

A. Analysis of Single Point’s Fourier Spectrum

When transducer elements are sequentially excited to uni-
formly transmit an acoustic impulse χ(t), a plane wave is
generated. By applying linearly increasing time intervals, i.e.,
time delay, the angle ϑ at which the plane wave travels can be
controlled. As shown in Fig. 1, the propagation of this wave
in 2-D can ideally be presented as

χ

(
t − 1

c
(x sin ϑ + z cos ϑ)

)
. (1)

As the plane wave propagates across an object, the local
variations of the speed of sound and density cause the scat-
tering of waves. These local variations are represented by
the function f (x, z). Under the Born approximation (multiple
scattering neglected), received signals can be decomposed into
independent wavefronts from distributed scattering points.
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Fig. 1. Schematic of the general Fourier-domain beamforming process,
including (a) reception of backscattered wavefront, (b) 2-D Fourier
transform to spectrum (kx , k), (c) spectrum remapping to wavenumber
pair (k ′x , k ′z ), and (d) reconstructed PSF.

The PSF formation can be analyzed by regarding a single
scattering point as the object function. If this point is located
at �r0 = (x0, z0 > 0) to scatter an incident plane wave’s
energy of one unit, the object function is represented as
f (x, z) = δ(x − x0, z − z0). The signal received by a
transducer element at �r = (x, 0) is given by p(x, t, x0, z0, ϑ).
As scattered waves travel to the element to generate sig-
nals, the transfer function of signal’s distant reception can
be modeled by free-space Green’s function G(�r , �r0, k) =
(e−ik|�r− �r0|/2π |�r − �r0|). This signal modeling is valid for wave
propagation in homogeneous and isotropic mediums. We adopt
the angular wavenumber k = (2π/cT ), where c and T refer
to the speed of sound and the oscillation period, respectively.
The decaying factor (1/|�r − �r0|) represents the divergence of
a spherical wave from the center source of the scattering
point. The frequency-dependent attenuation of acoustic waves
can also be modeled as an exponential decaying component
e−μk(|�r− �r0 |+z0 cos ϑ+x0 sin ϑ). The common technique to com-
pensate the divergence and the attenuation, time-gain com-
pensation (TGC), is not included in our model. In addition,
an apodization function E(x) can be arbitrarily assigned to
weight signals.

Noticeably, our model is defined in a 2-D plane without con-
sidering the elevational dimension. To include this dimension,
the complex 3-D diffraction pattern caused by the elevational
focusing should be modeled. This can, for instance, be realized
by considering a specific element geometry in a similar way as
in Field II, instead of using the free space Green function [29],
[30]. If not considering the elevational effect, the temporal
spectrum of the signal received at the aperture (x, 0) from a
single scattering point at (x0, z0) can be modeled as

p(x, k, x0, z0, ϑ) = εk(θ)X (k)E(x)

2π |�r − �r0| e−(μk+ik)(|�r− �r0ϑ+x0 sin ϑ)

(2)

where X (k) represents the temporal spectrum of the impulse
waveform accounting for both the reception and transmission
transfer function. The term e−(μk+ik)(|�r− �r0|+z0 cos ϑ+x0 sin ϑ)

refers to the time delay and the energy decay through the
plane-wave transmission and the reception.

The term εk(θ) denotes the element directivity as the
efficiency of converting the mechanical vibration intensity into
the integrated electrical voltage toward a certain receiving
angle. It is worthwhile to mention that the definition of
element directivity is valid in far field, where |�r − �r0| �
4π D2k such single element can be regarded as a point
source. If the elements are planar and square with rigid
baffle condition, the element directivity can be depicted
by εk(θ) = (2 sin(k D sin(θ)/2)/k D sin(θ)) [31], whereas,
in practice, this term is more complex due to the variation
in either surface geometry or excitation voltage. In our model,
the element directivity of a sequence of identical elements
can be represented as a function of the wave receiving angle
θ = arctan(x0 − x/z0), where arctan represents the arctangent
function. This term is specified for a certain angular frequency
k, since the element sensitivity varies for different frequencies.
Moreover, the signal reception is confined to the transducer
aperture range [−(L/2), (L/2)], i.e., rect(x/L). Here, rect(x)
represents a function to assign its value to be 1 only within
[−(1/2), (1/2)] and 0 elsewhere. Moreover, the wavefront
energy after scattering is assumed to be isotropic with respect
to every receiving angle.

For obtaining the temporal–lateral spectrum of the received
signal, Fourier transform of the received signal along the
transducer’s lateral dimension can be applied

P(kx , k, x0, z0, ϑ)

=
∫

p(x, k, x0, z0, ϑ)rect
( x

L

)
e−ikx xdx

= e−(λk+ik)(z0 cos ϑ+x0 sin ϑ)

×
∫

εk(θ)X (k)E(x)

2π |�r − �r0| rect
(x

L

)
e−(λk+ik)|�r− �r0|e−ikx xdx . (3)

Here, we present the lateral wavenumber as kx = (2π/λx ).
For excluding evanescent waves, it is required to have |kx | < k
such that the dimensional wavenumber will not exceed the
integrated wavenumber.

The estimation of this integral is presented in the Appen-
dix based on the stationary phase approximation method [32].
The stationary phase approximation provides an asymptotic
approximation of a fast oscillating integral. The integral value
yields significantly around the stationary point, where the
derivative and the second-order derivative of phase profile are
zero and nonzero, respectively. This approximation requires
both the second-order differentiability of phase profile and the
continuity of intensity profile. Apart from the stationary point,
limits of integral also contribute to the integral value due to
the profile discontinuity. According to [33], contributions from
the stationary point and the limits of integral are in the order
of O(λ−1/2) and O(λ−1), respectively, where λ represents the
oscillating period. The latter term O(λ−1) can be regarded as
the error bound of the approximation if only the contribution of
the stationary point is included [34]. In our model, apodization
function E(x) and element directivity εk(θ) are assumed to
be smooth [31], [35] to support the stationary phase approx-
imation. However, the profile discontinuity around aperture
borders will increase the error bound of this approximation.
This is also illustrated by examples presented in the Appendix.
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Using the stationary phase approximation, it is derived that
the integral can be approximated as

P(kx , k, x0, z0, ϑ)

≈ e−μk(z0 cos ϑ+x0 sin ϑ) X (k)

√√√√ z0k2

2π
(
k2 − k2

x

)3/2

× e−i
(

x0(kx +k sin ϑ)+z0

(
k cos ϑ+

√
k2−k2

x

))
× βk

(
arctan

(
− kx/

√
k2 − k2

x

)
, x0, z0

)
(4)

where

βk(θ, x0, z0) = εk(θ)
cos θ

z0
e− μk z0

cos θ

× E(x0 − z0 tan θ)rect

(
x0 − z0 tan θ

L

)
. (5)

βk(θ, x0, z0) is defined as a wavefront intensity scaling
factor to present the combining effect of element directiv-
ity [εk(θ)], receiving apodization (E(x0 − z0 tan θ)), trans-
ducer geometry [rect(x0 − z0 tan θ/L)], wave’s divergence
(cos θ/z0), and attenuation (e−(μkz0/cos θ)).

In addition to the weighting function described in (5),
the spectrum expansion is also restrained by −(1/2μ) ≤
kx ≤ (1/2μ) to represent the Nyquist sampling limit in lateral
dimension. Spectrum exceeding this limit is wrapped into
lower frequency section such that the aliasing effect appears.
To take this effect into account, we accept a thresholding
function rect(μkx) to exclude spectrum out of range.

In (4), it can be noticed that the exponential phase
term e−i[x0(kx +k sin ϑ)+z0(k cos ϑ+√

k2−k2
x )] contains an identical

wavenumber relation as demonstrated by Cheng and Lu [22],
Lu [24], and Liu [21]

k ′
x = kx + k sin ϑ, (6)

k ′
z = k cos ϑ +

√
k2 − k2

x .

Apart from this exponential phase term, the other terms can
be combined as a weighting function


(kx, k, x0, z0, ϑ)

= e−μk(z0 cos ϑ+x0 sin ϑ) X (k)

√√√√ z0k2

2π
(
k2 − k2

x

)3/2

× βk

(
arctan

(
− kx/

√
k2 − k2

x

)
, x0, z0

)
rect(μkx) (7)

where e−μk(z0 cos ϑ+x0 sin ϑ) refers to the energy attenuation in
transmission process, X (k) represents the Fourier spectrum
of impulse waveform, and

√
(z0k2/2π(k2 − k2

x)
3/2) is con-

tributed by the wavefront curvature that a flatter wavefront
produces a higher value. The function is also weighted by the
term of βk(arctan(−kx/

√
k2 − k2

x), x0, z0), in which element
directivity, transducer geometry, wave divergence, and attenu-
ation are incorporated. rect(kxμ) refers to the lateral spectrum
range imposed by element pitch.

B. Analysis of PSF’s Formation in Fourier Migration

The phase exponential term derived in (6) results in the
same wavenumber relation in the f-k beamforming method
as derived by Lu [25]. This relation is widely accepted for

plane-wave Fourier migration reconstruction. The schematic
of described spectrum transform is shown in Fig. 1. In this
example, one point source is used to illustrate the transforming
process from wavefront to PSF.

If this relation is applied, P(kx , k, x0, z0, ϑ) can be pre-
sented as the function of k ′

x and k ′
z to be denoted as

P(k ′
x , k ′

z, x0, z0, ϑ) ≈ 
(k ′
x, k ′

z, x0, z0, ϑ)e−i(x0k′
x +z0k′

z )

(8)

where the weighting function of k ′
x and k ′

z is


(k ′
x , k ′

z, x0, z0, ϑ)

= e−μk(z0 cos ϑ+x0 sin ϑ) X

(
k ′2

x + k ′2
z

2(k ′
z cos ϑ + k ′

x sin ϑ)

)

× βk

(
arctan

(
sin ϑ

(
k ′2

z − k ′2
x

) − 2 cos ϑk ′
x k ′

z

cos ϑ
(
k ′2

z − k ′2
x

) + 2 sin ϑk ′
x k ′

z

)
, x0, z0

)

×
√√√√ z0(k ′

z cos ϑ + k ′
x sin ϑ)(k ′2

x + k ′2
z )2

π
(

cos ϑ
(
k ′2

z − k ′2
x

) + 2 sin ϑk ′
x k ′

z

)3

× rect

(
μ

(
k ′

x

2
+ k ′

z

2

k ′
x cos ϑ − k ′

z sin ϑ

k ′
z cos ϑ + k ′

x sin ϑ

))
. (9)

The interpretation of the weighting function becomes easier
when the wavenumbers are transferred into polar coordinates

k ′
ϕ = arctan

(
k ′

x

k ′
z

)

k ′
ρ =

√
k ′2

x + k ′2
z . (10)

By substituting (6) and (10) into above, the limit of |kx | < k
can be converted to the limit of angle

−π

4
+ ϑ

2
< k ′

ϕ <
π

4
+ ϑ

2
. (11)

Within the polar coordinate, 
(k ′
x , k ′

z, x0, z0, ϑ) can be
presented as a function of k ′

ϕ and k ′
ρ


(k ′
ϕ, k ′

ρ, x0, z0, ϑ)

= e−μk(z0 cos ϑ+x0 sin ϑ)

√
z0 cos(k ′

ϕ−ϑ)

k ′
ρ(cos(2k ′

ϕ−ϑ))3 X

(
k ′
ρ

2 cos(k ′
ϕ−ϑ)

)

× βk(ϑ − 2k ′
ϕ, x0, z0)rect

(
μk ′

ρ sin(2k ′
ϕ − ϑ)

2 cos(k ′
ϕ − ϑ)

)
. (12)

It is worthwhile to mention that the limit of wavenumber
angle in (11) guarantees the finite value of the weighting
template 
. It can be observed that 
(k ′

ϕ, k ′
ρx0, z0, ϑ) is

composed of five parts.

1) The energy attenuation factor in the transmission
process: e−μk(z0 cos ϑ+x0 sin ϑ).

2) X (k ′
ρ/2 cos(k ′

ϕ − ϑ)) represents the mapping from
impulse waveform spectrum to polar wave vector pair
(k ′

ϕ, k ′
ρ). One may notice that the scale of the spectrum

is squeezed by cos(k ′
ϕ − ϑ) at the angle of k ′

ϕ .
3) βk(ϑ − 2k ′

ϕ, x0, z0) originates from the wavefront inten-
sity scaling effect that combines element directiv-
ity, receiving apodization, transducer geometry, wave’s
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divergence, and attenuation. It acts as a weighting win-
dow in angular dimension shifted by (ϑ/2). Its narrower
distribution produces a smaller angular bandwidth in
Fourier domain. As the imaging point moves deeper,
the effective receiving angle of βk is limited to a smaller
range, which will lead to a noticeable degradation of the
lateral resolution.

4)
√

(z0 cos(k ′
ϕ − ϑ)/k ′

ρ(cos(2k ′
ϕ − ϑ))3) is the wavefront

curvature factor that is depending on imaging depth
(
√

z0), radial wavenumber (
√

1/k ′
ρ), and angular

wavenumber (
√

(cos(k ′
ϕ − ϑ)/cos(2k ′

ϕ − ϑ)). As stated
in (11), k ′

ϕ is limited between −(π/4) + (ϑ/2) and
(π/4) + (ϑ/2). If k ′

ϕ approaches either margins, this
term’s value extensively increases but still remains finite.
The increase in this term is due to a flatter wavefront at
large receiving angle.

5) The threshold function rect(μk ′
ρ sin(2k ′

ϕ − ϑ)/
2 cos(k ′

ϕ − ϑ)) represents the spectrum range imposed
by the element pitch μ. After the spectrum mapping,
the simple rectangular function in lateral dimension is
tilted by about −(ϑ/2) for small steering angle ϑ .

Above analysis of the weighting function can be used for
PSF estimation. By applying inverse Fourier transform of
the remapped spectrum in (8), the PSF at (x0, z0) can be
reconstructed

q(x, z, x0, z0, ϑ)

=
∫∫ +∞

−∞
P(k′x , k′z, x0, z0, ϑ)ei(xk′

x +zk′
z )dk′x dk′z

≈
∫∫ +∞

−∞

(k ′

x, k ′
z, x0, z0, ϑ)e−i(x0k′

x +z0k′
z )

× ei(xk′
x +zk′

z )dk ′
xdk ′

z. (13)

Following the convolution theory, we can obtain the PSF in
the convolution form:

q(x, z, x0, z0, ϑ)

≈
(∫∫ +∞

−∞

(k ′

x , k ′
z, x0, z0, ϑ)ei(xk′

x +zk′
z )dk ′

xdk ′
z

)

∗
(∫∫ +∞

−∞
e−i(x0k′

x +z0k′
z )ei(xk′

x +zk′
z )dk ′

xdk ′
z

)
= ω(x, z, x0, z0, ϑ) ∗ δ(x − x0, z − z0)

= ω(x − x0, z − z0, x0, z0, ϑ). (14)

Here, ω(x, z, x0, z0, ϑ) is the PSF, which is the
inverse Fourier transform of the weighting function

(k ′

x, k ′
z, x0, z0, ϑ). Sign ∗ represents the 2-D convolution

relation. It can be deduced that the PSF pattern is determined
by the weighting function 
, while the PSF position is
controlled by the exponential term.

From the analysis of spectrum weighting in (12), one can
observe that the PSF is mainly affected by two components:
the impulse waveform spectrum depicted by X mainly in
radial dimension and the weighting profile determined by both
intensity scaling ratio βk and the wavefront curvature term in
angular dimension.

Moreover, it is worthwhile to mention the influence of
the exponential term e−i(x0k′

x +z0k′
z ) on the PSF. In an ideal

TABLE II
TRANSDUCER CHARACTERISTICS IN SIMULATIONS AND EXPERIMENTS

situation, this term only controls the PSF position. However,
potential sound speed variance and phase aberration will
undermine this exponential term’s accuracy, which results in
deformation and spatial shift of the PSF pattern.

C. Validation in Simulation and Experiment

To examine the accuracy of the proposed theory, we con-
ducted both simulations and experiments. Simulated and
experimental PSFs were compared to their patterns and Fourier
spectra derived from the proposed theory. Transducer parame-
ters in experiments and simulations are listed in Table II. The
experiment uses 128 elements with fixed pitch-to-wavelength
ratio about 1. In simulation, the pitch-to-wavelength ratio is
set to 0.5 to allow broader lateral bandwidth for expanding the
spectrum. The simulated transducer employs a larger number
of elements to obtain a relatively larger aperture.

Field II software package [34] was used to simulate the
process of transmit, scatter, and reception. The simulation
computes the impulse responses from scattering points to each
element. Simulated RF signals were processed following the
spectrum transformation and remapping approaches introduced
in Section II. This process is similar to the method proposed
by Lu [24], while leaving out a weighting on the Fourier
spectrum. Simulations of PSF were repeated for multiple
scenarios in which we varied: 1) the position of the scattering
point along the depth and lateral directions; 2) the apodization
setting in receive; and 3) the plane-wave steering angle.

For experiments, an ATL (ATL, Bothell, WA, USA) linear
L12-5 38-mm probe was connected to a Verasonics V1 128-
channel ultrasound system (Redmond, WA, USA). Plane-wave
data set was acquired by imaging a wire target immersed in
water. The diameter of this wire was 0.05 mm, and thus, it can
be regarded as a single scattering point in the axial–lateral
plane. We used 128 elements in transmission and reception.

For validation, PSFs and their spectra obtained in simu-
lations or experiments are compared with PSFs and spectra
estimated in theory. In the comparison, an arc band of the
spectrum amplitude and a lateral line of the PSF envelope
were extracted and evaluated. An amplitude distribution was
calculated at the average spectrum intensity in an arc band
of 400 m−1 wide along the arc of radius k ′

ρ = (2 fc/c).
An intensity profile was measured on the line, laterally cross-
ing the peak of the PSF envelope, which was obtained by
applying Hilbert transformation. Spectrum amplitude distrib-
utions and PSF envelope intensity profiles were aligned by
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simply matching their spectrum 0◦ sections and the profile
peaks, respectively. After aligning PSF patterns, mean error
was calculated as the intensity difference normalized by the
peak value, for the region where the envelope is higher than
0.1% of the peak value. This small threshold includes the
central PSF pattern and major sidelobes, while the mean value
will not become extremely low in averaging the pattern over
a large region.

Theoretical estimation of the analytical spectrum was based
on (4) and (9). Using only one scattering point target,
the impulse waveform χ(t) was estimated from the received
wavefront recorded on 32 elements that are centered around
the lateral position of the point target. We used only 32 ele-
ments because these channels have higher signal energies
relative to thermal noise. Signals were sequentially extracted,
interpolated, aligned, and finally summed up to form the
impulse waveform. Contributed by element directivity, wave-
front attenuation, and divergence, or target’s scattering pat-
tern, the combined analytical intensity scaling ratio βk(θ)
was approximated by fitting a Gaussian function with the
measured wavefront intensity distribution. Gaussian function
provides a certain flexibility in fitting the coarse intensity
distribution that is supposed to be smooth and symmetric.
Here, intensity ratio’s dependence on frequency was not taken
into account.

III. RESULT

A. Effects of Point Depth and Lateral Position

Within the analytical model, the influence of scattering
point’s position is mainly reflected in βk . In Fig. 2, beam-
formed PSFs and their spectra at 5-, 20-, and 40-mm depths are
presented for comparison. The mean error between analytical
PSF envelope and simulated one is 0.59%, 0.35%, and 0.76%.

For a shallow imaging point at 5 mm as shown in Fig. 2(a),
a broad analytical spectrum is bounded within the thresholding
template rect(x/L) to mimic the aliasing effect of wrapping
spectrum. Wrapping spectrum produces apparent sinc oscillat-
ing artifacts. As the scattering point moves deeper, the angular
spectrum becomes more uniform and narrower to be con-
tained within the thresholding template. Thus, significant sinc
oscillating lobes caused by wrapping spectrum are no longer
present. A narrower angular spectrum produces a smaller
angular gap between sidelobes. Because a narrower angular
spectrum will broaden the PSF envelope profile, the lateral
resolution decreases for deeper imaging point.

For a scattering point positioned at 20-mm depth, spectra
and PSFs for lateral shifts of 0, 7.5, and 15 mm are pre-
sented in Figs. 2(b) and 3. Mean errors between analytical
PSF envelop and simulated envelope are 0.35%, 0.28%, and
0.43%. As expected, PSF pattern and spectrum distribution
are horizontal symmetric when the point is in the middle
and asymmetric when the point is shifted. It can be observed
that the angular spectrum is rotated toward the anticlockwise
direction, as the imaging point moves to a positive lateral
position. The spectrum change over the point’s lateral position
is also reflected in anticlockwise tilting PSF patterns.

Fig. 2. Effect of imaging point’s depth on PSF and spectrum. Along
the middle line, imaging point is positioned at (a) 5, (b) 20, and (c)
40 mm deep, respectively. Plane wave is steered at 0◦ by a 256-element
transducer. In each subfigure, the first two columns represent Fourier
spectrum (top) and PSF (bottom) in simulation and analytical derivation,
respectively. The last column contains spectrum amplitude distribution
and PSF lateral envelope intensity profiles compared between simulation
(red solid line) and analytical derivation (gray dotted line). Spectrum
amplitude distributions are measured along an arc labeled in first two
columns. PSF lateral envelope profiles are measured along the horizontal
line across the intensity peak. From (a) to (c), errors between analytical
PSF envelope profile and simulated one are 0.59%, 0.35%, and 0.76%,
respectively.

B. Effect of Receiving Apodization

In our theoretical model, element directivity, transducer
geometry, and receiving apodization are combined in the
wavefront intensity scaling factor βk . This factor determines
both the lateral profile and the rotation of PSF to a large extent.
Fig. 4 presents the results for three different apodization
settings: full Hanning, double adjunct Hannings, and half
aperture of 64 elements. Mean errors between analytical PSF
and simulated envelopes are 0.19%, 0.28%, and 0.32%. The
Hanning and the half aperture are similar to straightforward



302 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 67, NO. 2, FEBRUARY 2020

Fig. 3. Effect of imaging point’s lateral position on PSF and spectrum.
Along the depth of 20 mm, imaging point is laterally shifted for (a)
7.5 and (b) 15 mm. The example at the middle of 20-mm depth is
in Fig. 2(b). Plane wave is steered at 0◦ by a 256-element transducer.
Layout and setting of each subfigure are the same as Fig. 2. Errors
between analytical PSF envelope profile and simulated one are 0.28%
for (a) and 0.43% for (b).

apodizations in DAS with decreased lateral resolution. The
double-Hanning function is similar to the transversal oscil-
lation technique [35]. One can have an intuitive observation
that the spectrum amplitude distribution is weighted by the
apodization function in angular dimension.

The weighting function across the spectrum angular profile
is also manifested in the PSF pattern. Hanning window sup-
presses the sidelobes and smooths the PSF lateral profile at the
expense of lateral resolution. This outcome is similar to the
observation in designing the apodization of DAS. In the last
case of the double-Hanning window, an oscillation pattern of
the PSF’s lateral profile can be observed similar to transversal
oscillation technique.

C. Effect of Plane-Wave Steering Angle

If the plane wave is transmitted toward a certain angle, it can
be deduced from (6) that the remapped spectrum will be tilted.
For a point positioned at 20-mm depth in the middle, PSFs
and spectra produced for 0◦, 10◦, and 20◦ plane waves are
presented in Figs. 2(b) and 5(a) and (b). We also present an
example of shifting the point for 7.5 mm and steering the
plane wave at 10◦. For these examples, mean errors between
analytical PSF and simulated envelopes are 0.35%, 0.38%,
and 0.41%. It is shown that spectrum and PSF rotate in
the anticlockwise direction when steering plane wave toward
larger angles.

Fig. 4. Effect of receiving apodization on PSF and spectrum. Three
apodization windows (a) Hanning, (b) double-Hannings, and (c) half
aperture. Plane wave is steered at 0◦ by a 256-element transducer.
Layout and setting of each subfigure are the same as Fig. 2. From (a)
to (c), errors between analytical PSF envelope profile and simulated one
are 0.19%, 0.28%, and 0.32%, respectively.

D. Validation in Experiment

To further validate the theory, analytical spectra and PSFs
are also compared with the experimental results as presented
in Fig. 6. In Fig. 6(a) and (b), the wire target is positioned
in the middle and around 17-mm depth with plane waves at
angles of 0◦ and 20◦. Fig. 6(c) presents a case of shifting
wire for 6 mm and steering plane wave at 10◦. Mean errors
between analytical PSF and simulated envelopes are 0.51%,
0.65%, and 0.49%. Similar to the simulation of plane-wave
steering in Fig. 5, one can observe the rotation of spectrum
and PSF in both experiment and analytical results.

IV. DISCUSSION

A. Accuracy of Proposed Theory

We present and comprehensively analyze a theoretical
model of PSF’s formation in Fourier-based beamforming



CHEN et al.: PSF FORMATION IN PLANE-WAVE IMAGING 303

Fig. 5. Effect of plane-wave steering angle on spectrum and PSF. For
a point positioned in the middle of 20-mm depth, plane wave is steered
toward at (a) 10◦ and (b) 20◦. The image of 0◦ can be found in Fig. 2(b).
(c) Image of steering 10◦ and lateral shift of 7.5 mm. The transducer
contains 256 elements. Layout and setting of each subfigure are the
same as Fig. 2. From (a) to (c), errors between analytical PSF envelope
profile and simulated one are 0.38%, 0.41%, and 0.38%, respectively.

process. An analytical expression was carried out to depict
the spectrum and PSF. In this expression, multiple factors,
including the transducer geometry, plane-wave steering angle,
transducer characteristics, and receiving apodization, are taken
into account. In comparison with simulations and experi-
ments, the proposed theory shows high accuracy in predicting
spectrum distribution and PSF. The lateral aliasing effect is
properly approximated by imposing an arbitrary thresholding
template, as shown in Figs. 2(a) and 6.

It can be noticed that apparent oscillating patterns appear
across the simulated and experimental spectrum amplitude
distribution with exceptions of smooth profiles in Fig. 4(a) and
(b). This can be explained by Gibbs phenomena that are mainly
related to limited aperture diameter in representing a steep
spectrum distribution. The mismatch between coarse practical

Fig. 6. Validation of spectrum and PSF in experiment. In (a) and (b),
L12-5 transmits plane waves at 0◦ and 20◦ to insonify a wire located in
the middle of 17-mm depth. In (c), the wire is shifted by 6 mm, and the
steering angle is 10◦. Layout and setting of each subfigure is the same as
Fig. 2. From (a) to (c), mean errors between experimental PSF envelope
profile and analytical one are 0.51%, 0.65%, and 0.49%, respectively.

spectra and smooth analytical ones can be regarded as the
stationary phase approximation error induced by discontinu-
ities around aperture borders. Noticeably, the spectrum mis-
match is not directly reflected in the quantified PSF envelope
error.

For PSF, the theory also shows high accuracy in depict-
ing the simulated or experimental PSF pattern. In line
with the transition of spectrum, PSF is shown to be either
rotated or reshaped when moving the point position or chang-
ing the apodization. These PSF changes were also accurately
predicted by our theory. The mean error between simulated
PSF and analytical envelopes is mainly within 0.19%–0.51%
except for the larger error 0.76% in the 4-cm depth case.
The mean error for experimental PSFs is larger to be within
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Fig. 7. Comparisons between numerical and analytical integral values
for amplitude (top) and phase (bottom), computed for (a) full-aperture
Hanning and (b) rectangular apertures.

0.49%–0.65%. This difference can be mainly explained by
the coarser wavefront intensity profile in experiment, while
the profile in analytical approximation is fitted by a Gaussian
function. The increasing error in experiment can also be caused
by the aliasing artifact given the larger pitch-to-wavelength
ratio.

B. Limitations of Theoretical Model

Although the proposed theoretical model presents high
accuracy in depicting the spectrum distribution and PSF shape,
there are multiple factors that might limit its accuracy and
applicability in practice.

The primary limitation is the error of stationary phase
approximation that depends on the second-order differentia-
bility of phase profile and the continuity of intensity pro-
file. Regarding the phase profile, both phase aberration and
variation of the speed of sound are potential to undermine
the differentiability of phase profile. Regarding the inten-
sity profile, it cannot be modeled as smooth when elements
present nonuniform directivities or a nonsmooth apodization
is applied. As explained in the method section, the disconti-
nuity around the aperture border serves as the error bound
of stationary phase approximation. This effect is shown in
the comparison between the smooth and the discontinuous

apodization examples in Fig. 4. Furthermore, the transmission
processing is modeled as an ideal plane-wave propagation,
while, in practice, sidelobes and grating lobes may also
become significant in those cases of low wavelength-to-pitch
ratio and large steering angle. This grating lobe has not been
considered in the proposed theory.

In addition, different from the direct approximation of the
integral in our theoretical approximation, the aliasing effect of
discrete Fourier transform (DFT) in practical beamforming is
a significant bottleneck due to insufficient sampling. Because
the lateral frequency range is limited by the element pitch,
the spectrum content beyond the limit will be wrapped inside
to cause aliasing artifact. For plane-wave ultrasound, the alias-
ing will occur on the wavefront section with a steep slope,
particularly for the shallow imaging depth. To account for the
effect of limited bandwidth, an arbitrary thresholding template
is introduced in (7). The effectiveness of such template can be
examined in the example of Fig. 2(a), where significant sinc
oscillation pattern appears for a point at shallow depth.

Furthermore, our model is based on the Born approximation,
which assumes multiple scattering to be at least 50 dB lower
than direct scattering. This approximation is challenged in the
presence of significant phase aberration caused by reflection,
diffraction, and speed of sound variance. Proposed model also
neglects the elevational dimension, where the beam profile
produced by element geometry influences the field intensity
on both transmit and receive. Future work is expected to also
incorporate the phase aberration and the elevational dimension
into the model.

C. Potential Applications

Notwithstanding aforementioned limitations, our theoretical
model provides a guidance on Fourier-based beamforming and
postprocessing of plane-wave ultrasound. Given the point’s
position, transducer characteristics, and beamforming setting,
both the spectrum and the PSF can be accurately predicted.
In this sense, the theory provides a fast way to determine
those effects of transducer settings, beamforming and imaging
settings on PSF, and, thus, resolution and sidelobe levels
(CNR). This might be useful to determine the feasibility
of a specific beamforming method or imaging optimization
setting to obtain optimal resolution and CNR for any position
within the imaging view. Although the effectiveness of image
restoration from PSF using deconvolution is controversial for
ultrasound, this work may facilitate the development of a
practical restoration technique.

Furthermore, proposed theory based on stationary phase
approximation can also be extended to other techniques, such
as diverging wave and synthetic aperture imaging. With respect
to the diverging wave imaging, it still does not exist as a
general wavenumber mapping relation applicable for the entire
volume. Using our method, the derivation of the specific
relation for a certain region is straightforward. Similarly,
the PSF formation in Fourier-based beamforming of synthetic
aperture imaging can also be analyzed through our approach
by incorporating the transducer characteristics and the imaging
position.
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V. CONCLUSION

In this study, a theoretical model of PSF’s formation is pre-
sented for plane-wave Fourier-based beamforming. Multiple
factors, such as the transducer geometry, plane-wave steering
angle, and point’s position, are included in the model. Spectra
and PSFs from theoretical approximation are similar to those
spectra and PSFs from simulations and experiments. Proposed
theoretical model can provide a guidance to optimize the
beamforming and postprocessing of plane-wave ultrasound.

APPENDIX

INTEGRAL APPROXIMATION BY THE STATIONARY

PHASE METHOD

The integral in (3) can be approximated by the stationary
phase method [21]. The integral is

P(kx , k, x0, z0, ϑ)

=
∫ +∞

−∞
p(x, k)rect

( x

L

)
e−ikx x dx

= e−(λk+ik)(z0 cos ϑ+x0 sin ϑ)

×
∫ +∞

−∞
εk(θ)X (k)E(x)

2π |�r − �r0| rect
( x

L

)
e−(λk+ik)|�r− �r0|e−ikx xdx .

(A.1)

Given �r = (x, 0) and �r0 = (x0, z0), the Cartesian coordinate
can be converted to polar form as θ = arctan(x0 − x/z0),
where arctan represents the arctangent function. Correspond-
ingly, x = x0 − z0 tan θ and |�r − �r0| is equal to (z0/cos θ).
We can use

βk(θ, x0, z0)

= εk(θ)
cos θ

z0
e− λk z0

cos θ rect
(
− z0

L
tan θ + x0

L

)
E(x0 − z0 tan θ)

(A.2)

to represent the wavefront intensity scaling factor as a function
of receiving angle. This factor combines those effects of
element directivity, receiving apodization, wave divergence,
attenuation, and transducer geometry. This received wavefront
intensity is presented with respect to angle from �r0 to �r .

Using such a notation, (A.1) can be presented as

P(kx , k, x0, z0, ϑ)

= e−(λk+ik)(z0 cos ϑ+x0 sin ϑ) X (k)

2π

×
∫ +∞

−∞
βk

(
arctan

(
x − x0

z0

)
, x0, z0

)

× e
−i

(
kx x+k

√
(x0−x)2+z2

0

)
dx . (A.3)

To explain the stationary phase approximation, we let
g(x) = βk(arctan(x − x0/z0), x0, z0) and f (x) = kx x +
k
√

(x0 − x)2 + z2
0. If k mainly consists of high-frequency con-

tent (around the central frequency), f (x) is a rapidly varying
function. Rapid oscillation of the exponential term means that
the integral is approximately zero except the section where
f ′(x) = 0. The point satisfying the zero derivative is labeled
as xs . Expanding f (x) into Taylor series near the point xs

f (x) ≈ f (xs) + 1

2
f ′′(xs)(xs − x)2. (A.4)

Using the stationary phase approximation, the integral in (A.2)
can be approximated as∫ +∞

−∞
βk

(
arctan

(
x − x0

z0

)
, x0, z0

)
e−i

(
kx x+k

√
(x0−x)2+z2

0

)
dx

=
∫ +∞

−∞
g(x)e−if(x)dx ≈

√
2π

i f ′′(xs)
g(xs)e

−i f (xs). (A.5)

Given kx and k, (∂ f /∂x) = 0 is satisfied at point xs =
x0 − (kx/

√
k2 − k2

x)z0. Around this point

f (xs) = kx x0 + z0

√
k2 − k2

x ,

f ′′(xs) =
(
k2 − k2

x

)3/2

k2z0
. (A.6)

Substituting (A.5) into (A.4), the integral becomes∫ +∞

−∞
g(x)e−i f (x)dx

≈ g(xs)

√
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e−i π

4 . (A.7)

Considering the spatial shifting property, the influence of
the phase term e−i(π/4) becomes insignificant for high fre-
quency k. This term will be neglected in the following text.
Using the result of the approximation, the integral in (A.2) is
approximated as

P(kx , k, x0, z0, ϑ)

≈ e−λk(z0 cos ϑ+x0 sin ϑ)βk

(
arctan

(
− kx/

√
k2 − k2

x

)
, x0, z0

)

×X (k)

√√√√ z0k2

2π
(
k2−k2

x

)3/2 e−i[x0(kx +k sin ϑ)+z0(k cos ϑ+
√

k2−k2
x )].

(A.8)

In the above derivation, the approximation requires
both the second-order differentiability of the phase pro-
file f (x) as well as the continuity of the intensity pro-
file g(x) = βk(arctan(x − x0/z0), x0, z0). Due to the term
rect(−(z0/L) tan θ + (x0/L)), function βk may become dis-
continuous around the aperture border, which can lead to
an error in the integral calculation [34]. As illustrated in
Fig. 7, the error is usually, in case of a smooth apodiza-
tion function, negligible, but can reach values of ∼10% in
highly discontinuous cases. Here, we present two examples
to illustrate the error induced by discontinuous aperture bor-
ders. Given an array of N = 256 elements with a pitch
�x = 150 μm, a wavenumber k = (2π Fc/c) with Fc =
5 MHz, and c = 1540 m/s, we can calculate the DFT of
the wavefront scattered at (x0, z0) = [0, 5] mm using (A.8).
Resulting amplitude and phase values are presented below
for a full-aperture rectangular and a Hanning apodization
profile, respectively, representing cases of discontinuous and



306 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 67, NO. 2, FEBRUARY 2020

continuous aperture borders. For the rectangular profile, mean
absolute errors between numerical and analytical solutions
are 12.1% and 6.5% for the amplitude and phase. For the
Hanning profile, normalized errors are 0.30% and 3.3%. The
significantly increased error of the rectangular profile can be
attributed to the inaccuracy around the discontinuous aperture
border.
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