Remote Generation of Modulators for Super-Resolution Imaging

Jian-yu Lu!

Department of Bioengineering, The University of Toledo

September 15, 2025



This paper is submitted to the Proceedings of Meetings on Acoustics (POMA) of the Acoustical Society of America (ASA),
corresponding to the published abstract presented on the 188" Meeting of Acoustical Society of America, May 13-18, 2025,
New Orleans, LA, USA. The DOI of the published abstract: https://doi.org/10.1121/10.0037370

Remote Generation of Modulators for Super-Resolution Imaging

Jian-yu Lu

Department of Bioengineering, The University of Toledo, Toledo, Ohio, USA
Email: jian-yu.lu@ieee.org

ABSTRACT

In 1873, Ernst Abbe found a diffraction limited resolution of about 200 nm for conventional optical
microscopes. Many methods to overcome the limit (super-resolution) have been developed. Recently, a general
super-resolution imaging method was developed based on the theory of linear shift-invariant (LSI) system and
modulation of the system point-spread-function (PSF) (Lu, IEEE TUFFC, Jan. 2024), which has broad applications
in various disciplines of science, engineering, and medicine. In this paper, focused shear waves generated remotely
by radiation force were studied comprehensively via theoretical analyses and computer simulations to modulate the
imaging waves or the PSF of imaging systems such as those of B-mode and photoacoustics for super-resolution
imaging. A method to reduce sidelobes and thus increase the contrast of super-resolution images was developed.
Atomic imaging with small physical particles such as optically opaque ions was suggested. It is found that focused
shear waves can be produced with an annular, 2D, or 1D array transducer; with a conventional focused beam; or
even with local vibration sources. Also, they can resonate to increase signal-to-noise ratio (SNR). This study paves a
way for super-resolution imaging of mechanical properties (shear-wave amplitude, speed, spectrum, and
nonlinearity) of biological soft tissues deep in the body.
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1.INTRODUCTION

In 1873, Ernst Abbe found that the conventional optical microscopes have a diffraction limited resolution of
about 200 nm [1]. Methods to overcome the limit (super-resolution) have been developed [2]-[12], including the
1994 stimulated emission depletion (STED) [13] and 2006 photoactivated localization microscopy (PALM) [14] that
won the 2014 Nobel Prize in Chemistry. Recently, a general super-resolution imaging method was developed by the
author based on the theory of linear shift-invariant (LSI) system and modulation of the system point spread function
(PSF) [15]. Since many practical imaging systems are LSI or can be approximated as an LSI system, the method can
have broad applications in various disciplines of science, engineering, and medicine [15]-[18]. In this paper, focused
shear waves were studied in details as modulators both theoretically and with computer simulations for low-sidelobe
and high-contrast super-resolution imaging of mechanical properties (shear-wave amplitude, speed, spectrum, and
nonlinearity) of biological soft tissues deep in the body if the half wavelength of the shear waves is smaller than the
size of the PSF. The focused shear waves can be produced remotely by focused Bessel (forming a cylindrical ring of
radiation force [19]-[21]) or cosine [22] (forming plates of radiation force) beams with an annular (can be steered
mechanically [20]), 2D, or 1D array transducer or produced locally by other vibration sources to modulate the
imaging waves or the PSF of imaging systems such as pulse-echo B-mode, photoacoustic [23], and non-destructive
evaluation (NDE) [24] imaging. Note that since the conventional focused plane wave is a special case of the focused
Bessel or cosine beam with their scaling parameters set to zero [20], it also can be used to produce focused shear
waves for super-resolution imaging, which minimizes the effects of shear wave attenuation [25]. Also, the focused
shear waves can produce high resonance peaks under certain boundary conditions, which increases shear-wave
amplitude for imaging of nonlinear properties of objects and improving the signal-to-noise ratio (SNR) of the
imaging systems. Such boundary conditions can be realized with phased-locked radiation force [26], fixed amplitude
or stress at the boundaries, or other mechanisms [27]. Finally, the sensitivity and dynamic range of the imaging
systems, and thus the resolution of super-resolution images, can be greatly increased if the imaging waves
modulated at different times can interfere coherently before being detected using the block diagram in the lower-left
corner of Fig. 1 (also see P. 167 of Ref. [15]). In addition to the focused shear waves, the modulators can be small
physical particles such as nanoparticles (or may be optically opaque ions for atomic imaging) [15].

2. THEORETICAL PRELIMINARIES

A. NAVIER-CAUCHY EQUATION FOR ISOTROPIC AND LINEAR ELASTICITY

The Newton's second law for a small volume of material (equation of motion) is given by [27]:
9’5 \(731)
or’

p(F;t) =V-o(F;t)+G'(F;t), €]
where p(7;f) is density (kg/m®), 5'(7;¢) is displacement in meter (m), “V-” is the divergence in terms of 7,
o(7;t) is a stress tensor (Pascal or Pa or N/m?), G'(7;¢) is a force per unit volume or volumetric force (N/m?),
7 =(x,,,,2) 1s a spatial position in rectangular coordinates (see Fig. 1), and ¢ is the time. According to Hooke’s
Law (stress-strain relationship) in isotropic linear elastic media, we have [27]:

o(F;t) = AV -5 (70l + 2ue(F31) ()
where 7 (N/m?) is the first Lame constant, ¢ (N/m?) is the second Lame constant or shear module, I is a unit
(identity) tensor, and &(#;¢) is a strain tensor (a relative dimension change):

&(F;1) = {VS'(F;0) +[VS'(F;0]'} /2, 3)
where V is a gradient in terms of 7, and 7 means transpose. Inserting Egs. (2) and Eq. (3) into Eq. (1), we obtain

the Navier-Cauchy equation for isotropic and linear elasticity if the media is approximately incompressible (i.e.,
V-5'(¥;t) = 0, in media such as biological soft tissues):
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where c (¥;t) =~/ p(¥;t) is the shear wave speed (m/s), where the subscript “s ” means shear wave.
In cylindrical coordinates, Eq. (5) is given by:
10 az 1 9 G(1, 8y, 23)
2949 R NTY) . AL Lo 6
aro ( °ar0) 7 od; E)z cl(F;t) o :|S(I”0 ho2it)= U ©

where 5(7;,,8,,2;¢) =5'(F;1), G(1y.8y,2:t) =G'(F;t), 7, =+/x¢ + ¢ is the radial distance, ¢, is the azimuthal angle,
X, =7,¢08(8,) , ¥, =1, sin(@,), ¥ = (7, cos(@,),7, sin(¢, ), z) .

B.SOLUTIONS TO THE WAVE EQUATION
I. SHEAR WAVE PRODUCTION WITH CYLINDRICAL RING OF RADIATION FORCE

a. Solutions by Directly Solving the Wave Equation:

Assuming that ¢ (7;t) =c, is a constant (which means that p(¥;t) is a constant if g is a constant), the shear
wave displacement §(7,,4,,z;¢) and the external volumetric force G(7,,4,,z;¢) are not a function of both ¢, and z,
and these vectors have only the =z component, ie., 5(7,4,,z¢)= s(r0,¢0,z;t)2° = s(ro;t)ZO and
G(7y, 8y, 2:8) = q(7, 8y, ;)" = q(7r;¢)Z° , where Z° is a unit vector in z , Eq. (6) can be simplified:

1 9’ q(ry3t)
——(ry=— s(ry;t) =—12—= 7
Loaro("aro) s s(r3t) u (7

If the external volumetric force is sinusoidal with frequency, f, (angular frequency , =27xf,), ie
q(r;t) = 0(r)e ™" and s(r;t) = S(ry;@,)e' ™", where i=+/—1, the subscript “s” of f, and @, represents shear
wave, and the amplitude of the volumetric force is uniform within the cylindrical ring, i.e., O(r;) = Q, is a constant
for 0<d, <1y <d,,and Q(r,) =0 elsewhere, Eq. (7) becomes the following inhomogeneous Helmholtz equation:
Q. ocd<r<d,

RS (i) =1 U ,(8)
0, Otherwise
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where d, and d, are the inner and outer radii of the cylindrical ring respectively, and k, =, /c, is the wave
number of the shear wave (k, is a complex number if there is attenuation). General solutions to Eq. (8) can be
obtained by getting a general solution to the homogeneous Helmholtz equation (setting the right hand side of Eq. (8)
to zero) plus a specific solution to the inhomogeneous Helmholtz equation. Letting & =k, and
S(ry;w,) =S"(&,;®,), the homogeneous Helmholtz equation in Eq. (8) becomes a zeroth-order Bessel equation:

2 . .
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Thus, the general solutions to Eq. (8) are given by linear combinations of zeroth-order Bessel functions:

Ay (k.1,), 0<r,<d,
S(ry;@,) =S';0,) = Bojo(ero)+C0Yo(ksro)_Qo/(k.sz/1)s d <r<d,, (10)
DOH((JI)(ero)a n,>d,

where —Q, /(k’ 1) is a specific solution to Eq. (8) in the region d, <7, <d,, J,(k,r,) and Y,(kr,) are the zeroth-
order Bessel functions of the first and second kind respectively (Y, (k,7) is also called zeroth-order Neumann
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function), and H\" (k1)) = J,(k,7,)+iY, (k1) is the zeroth-order Hankel function of the first kind for an outgoing
wave since its asymptotic behavior is H{"(k,7,) — \/Wksro)ei(k"“’””) as kry — . Note that the coefficient of
Y, (k,r,) for 1, <d, is setto zero in Eq. (10) (i.e., S(7;®,) = 4,J, (k7)) since | Y (k,7,)|—> o as r, = 0. As for
r,>d,, H\"(k,r,) instead of J,(k,7,) and Y,(k,r,) is used because the latter two represent standing waves.

Applying the continuity boundary conditions on both the displacement and stress (proportional to the radial
derivative of the displacement according to the Hooke’s law in isotropic linear elastic media) in Eq. (10), we have:
(1) Atr, =d, (Displacement Continuity): A4,J,(k,d,) = B,J,(k,d,)+ C,Y,(k.d,)— O, (k. 1)
(2) Atr, =d, (Radial Stress Continuity):  d[AJ,(k7)]/ dry |, _, = d[ByJ (k1) + CoY, (k.7)]/ dry |
(3) Atr, =d, (Displacement Continuity): B,J,(k,d,)+ C,Y,(k.d,)— O, /(k’u)= D,H" (k.d,)
(4) Atr, =d, (Radial Stress Continuity):  d[BJ, (k) + C Y, (k;r)]/ dry |, _, = d[D,H (k1))/ dry |, 4

= (1) AJy(kd) = ByJy(kd) - CYy(kd) =—0, (K p1);  (2) A (kd,))—ByJ\(kd)-CY(kd)=0; . an
() ByJy(kd,) + CYy(kdy) = DHy (k,dy) = Oy (ko) (4) ByJ\(k,dy)+ CY,(k,dy) — DyH (" (kd,) =0

ny=d,

Eq. (11) can be written in a matrix form, i.e.:

Jolkdy) —Jy(kd) —Yi(kd) 0 4, ~0, /(k; 1)
J(kd) -J/(kd) -Y(kd) O B,
AX:b:>A: l(s 1) 1( s 1) 1( s 1) o ,X= 0 ,b: 0 , (12)
0 Jolkdy)  Yy(kdy)  —Hy (kd,) Co Oy /(k;11)
0 Skd)  Ykd)  -HOKd)] (D] o
Solving Eq. (12), we obtain the coefficients A4, B,,C,, and D, of the shear wave in Eq. (10):
A, =[inQ, [k ))d,H," (k.d,) — d\H" (kd))] A, =[inQ, /(2k y01d, H\" (k.d,)
B, =m0, (k= (k) + o))y g |By= A, . a3
G, =70, /(2k))d,J (k,d,) G =0
D, =[ixQ, /2k )][-d,J,(kd)) +d,J (kd,)] D, =[irQ, /(2k w))d,J (k. d,)
If d, =0, the shear wave in Eq. (10) is given by:
S(r;@) = By (k1) = Oy [k 1) =i Q, 2k u)ld, H Y (k,dy) o (ki) = Oy (K o), 0< 1y <d, (14)
o Dy H" (k.ry) = [imQ, /(2k w))d,J, (kdy ) HY (k 1y ), > d, .

Eq. (14) is important since it shows that a modulator (focused shear wave) also can be produced using a
conventional focused beam (see Figs. 1(c) and 1(d) when ¢, <?, ), which may be ignored previously in shear-wave

imaging using radiation forces [25][28]. In this case, the same conventional focused transducer can be used to
produce both shear wave and imaging wave, which may simplify the imaging systems. Also, because the
propagation distance of the shear wave is minimized and thus the effects of shear-wave attenuation is reduced, shear
wave of a higher frequency can be used to further increase the image resolution. However, since the focal area of the

shear wave overlaps with the area of radiation force (—Q, /(k’#) in Eq. (14)), there may be interference between
them, although it is possible to remove such interference in the image reconstructions (see Fig. 1).
From Eq. (13), it is clear that at certain shear-wave frequencies (related to k) or radii (d, and d,) of the

cylindrical ring, the coefficients of the shear wave will have peaks (constructive interferences), i.e., the shear wave
can resonate, boosting the amplitude of the shear wave S(7,;®,) in Eq. (10) and increasing the phase shift to the

imaging waves, which will increase the signal-to-noise ratio (SNR) of the super-resolution imaging [15]. Note that a
Fabry—Perot type of resonance [29] can be established in a uniform media by a cylindrical ring of radiation force if
the force could form a partially reflective boundary of effective stiffness discontinuities caused by localized
oscillatory stresses (for simplicity, the effective stiffness discontinuities, if there are any, were not considered in Eq.
(10)) to further increase the SNR of super-resolution imaging [15]. To produce a stronger Fabry-Perot resonance, the
radiation force can be phase locked with the shear wave it produced through a feedback mechanism [26]. A strong
resonance can increase the nonlinear components of the shear wave, which can be used for tissue identification to
distinguish between malignant and benign tissues without biopsies in super-resolution imaging.




To reduce sidelobes of super-resolution images, the imaging waves modulated by two shear waves produced at
two moments of time, ¢, and ¢, , before and after an interference peak is formed at the ring center can be subtracted,

where |#, —¢, |=1/ f, should be one shear-wave period, as illustrated in Figs. 1(c) and 1(d), and Fig. 2. Note that the

sensitivity and dynamic range, and thus the resolution of super-resolution imaging, can be greatly increased if the
modulated imaging waves can interfere coherently before being detected (see the block diagram in lower-left corner
of Fig. 1 and P. 167 of Ref. [15]), where the modulators can be either the focused shear waves or small physical
particles (such as nanoparticles or may be optically opaque ions for atomic imaging) [15].
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Fig. 1. Generation of shear waves for modulation of the
phase of the point spread function (PSF) of an imaging
system (such as pulse-echo and photoacoustic [23]
imaging) for super-resolution imaging [15]. (a) A focused
Bessel beam (or its piecewise or binary approximation)
produced by an annular array or a two-dimensional (2D)
array transducer is used to generate a cylindrical ring of
radiation force at the focal distance (see experiment
results in Ref. [30]). (b) A focused cosine beam (or its
piecewise or binary approximation) produced by a one-
dimensional (1D) array transducer is used to obtain two
plates of radiation force at the focal distance. (c) A
circular low-sidelobe sharp interference peak (right) is
produced by subtracting two shear waves generated by
an annular or 2D array transducer in (a) at two moments
of time t; (middle) and f, (left) to obtain a net modulation
of the imaging wave for low-sidelobe super-resolution
imaging of mechanical properties (shear-wave amplitude,
speed, spectrum, and nonlinearity) of the object. (d)
Same as (c) except that the shear waves are produced by
a focused cosine beam with a 1D array transducer in (b).
Note that if the pink delay-subtraction unit at the lower-left
corner of the figure can be used to interfere coherently for
either ultrasound or optical waves modulated by the shear
waves obtained in either (a) or (b) before being detected,
the sensitivity and dynamic range of the super-resolution
imaging system can be greatly increased (Fig. 9 and
Page 167 of Ref. [15]). Such an increase in sensitivity
may make atomic imaging possible using opaque ions as
modulators in an optical imaging system (see the
interferometer on Page 167 of Ref. [15]). Also, the shear
waves in (¢) and (d) may resonate to boost wave
amplitude or signal-to-nose ratio (SNR) under certain
boundary conditions such as those produced with a
phase-locked radiation force [26]. However, in this case,
the sidelobes of the cosine shear wave may be high and
thus a computerized tomography (CT) method using the
resonant cosine shear waves at different azimuthual
angles as projections may be needed to reconstruct a
super-resolution image. Also note that, in (c) and (d), if £,
> t;, the radiation force ring in (a) or plates in (b) are
needed to obtain a sharp peak. If &, < t;, scaling
parameter a in the Bessel and cosine aperture weightings

can be set to zero (i.e., the radius or distance d1 is zero)
to produce conventional focused beams for super-
resolution imaging. In this case, the effects of shear wave
attenuation can be reduced since the shear wave
propagation distance is minimized. However, the
sidelobes of the subtracted shear waves may be higher
because there may be interference between the shear
waves ((c) or (d)) and a displacement produced by the
radiation force in the focal region of the transducers. To
form a super-resolution image, if an annular array in (a) is
used, the mechnical scanning system in Figs. 7 and 8 of
Ref. [20] can be used. However, if a 2D array in (a) or a
1D array in (b) is used, the beams can be steered
electronically to form super-resolution images.
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Fig. 2. Shear waves for low-sidelobe super-resolution
imaging (also see Figs. 1(c) and 1(d)) (shear waves
within and outside of the ring or plates are not included
since they are irrelevant, and shear-wave attenuation is
not considered). (a) Results obtained with a focused
Bessel beam transducer (annular or 2D array in Fig.
1(a)). (b) Results obtained with a focused cosine beam
transducer (1D array in Fig. 1(b)). Solid lines (black) are
shear waves at a moment of time before an interference
peak is formed. Dashed lines (blue) represent shear
waves at another moment of time when the interference
peak is formed. Dotted lines (red) are standing waves
whose peak amplitudes depending on boundary
conditions at dy and d; in Fig. 1 (d = (d1+d)/2 and (d.-d,)
= FWHM of the radiation force) and shear-wave
frequency. Dash-dotted lines (pink) shows the pulse-echo
(two-way) PSF of the imaging system (for photoacoustic
imaging, the PSF will be wider since it only has one-way
focusing). It is clear that with the parameters given in the
figure, super-resolution images can be obtained at a deep
depth (z=F =100 mm).




b. Solutions Using Green’s Function:

Alternatively, the solutions to Eq. (8) can be obtained with the Green’s function method [31]. Assuming that an
external line source (along the z direction) is located at (x',y') point in rectangular coordinates or located at the

corresponding (r',¢") point in cylindrical coordinates, i.e., the line source is given by a Delta function (note that the
dimension of a Delta function is an inversion of its argument) [32]:

0= g, - gy = SR gy, (15)

0 0 N=—co

O(xy=x", = ¥)=0(x, = x)(y, —¥") =

where the periodic function o(¢, —¢") is expanded as a Fourier series. Replacing the right hand side term of Eq. (8)
with Eq. (15) and adding a negative sign, we have:

> 190 1 9° 5(r -7 SN o

=z L -2 fka,, __ 9% =") m(%tﬁ)’ 16

(aro r, Or, +r0 od; TG )= 7 [27z”;ae ] (16)
where G(7,,r";w,) is the Green’s function of Eq. (8), which is produced by a cylindrical ring source of an infinitely
small ring width and an infinitely large amplitude at the ring radius r'. Since the right hand side of Eq. (16) has a
dimension of inverse of length squared, in this case, G(7,,7";@,) is dimensionless. Expanding G(7,,7";@,) as a

Fourier series in terms of @, —¢', and then inserting the expansion into Eq. (16), we have:

2 2 I o - ‘ _
(i li+ii+k2) z gn(royrv;a)x)e[’l(%*w :_5(7‘0 r )[L Z em(%fW]
oy n, o, 1 of; Pl A 2 =, (17
2 i e
:>[d72+li+(k2 )]gn(r05r3a))__5(r0 r)> n:—oo’---,—l,o,l’---,oo
dry 1, dr, I 27y,

Setting the right hand side of Eq. (17) to zero, we obtain a homogeneous Helmholtz equation (see Eq. (9)) that can
be transformed to an nth-order Bessel equation. Thus, the general solutions to Eq. (17) are given by (see Eq. (10)):

AT (kr), r<r
. o 1. — ) s © f=—ocor.—1.0.1.---.00 1
gn(’b’r’a):) gn (5095 ,C()S) {DH'H:’”(kSVO), },b>r' > n > > s Vs ly bl 9 ( 8)
where H" (k) = J,(k,,) + iY,(k,r,) is the nth-order Hankel function of the first kind (outgoing), and J, (k,7,)
and Y (k.r,) (Neumann function) are the nth-order Bessel functions of the first and second kind respectively.
Multiplying both sides of Eq. (17) with Q(r")/ # = Q,/ 1 and then integrating both sides via r'dr', we obtain a
solution to Eq. (8) (since S(7,;®,) is independent of ¢, , thus n =0 and the summation over n can be removed):

Q(r) > 1d , ; 00 80, — ) oo
j{ dro e dn + (K —*)]Z g, (r,rs@)e" v dr' = j[ ][72 @971y

0 e u T 27,e

d2
[7+li+(k2 _7) JQ(r)gn(rO’r';a)v)eM(% 90 Ay = Q(”o) Z B9
dr} 1 dr 7 ,,_,md i 2mu =,

‘ , (19)

(£+li+k N2 f QL r) & (1,1 )r'dr') = —%; (when n =0)

dr0 1, dr,

o)

(209 (ro,r';a)s)r'dr':27rj
d

:>S(r0;a)s):27rf
o M

G(ry,r';@)r'dr'; (whenn=0)

where the Green’s function G(r,,r";®,) = g,(r,,r";®,) since n=0 (see Eq. (16)).
Now let us find the coefficients 4,' and D,' for the Green’s function in Eq. (18) when n=0. Applying the
continuity boundary condition for G(r,,r";®,) at r', we have:
4o (k) |, =Dy Hy (k) |, o= A"y (kr') = Dy Hy (kr') =0 (20)

Integrating Eq. (17) (n=0) across the boundary r' and then taking a limit via a real number o — 0 (another
boundary condition with derivative of G(7,,r';@,) and a jump at »'), we obtain another equation for 4, ' and D, ':
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lim 1d
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[% L AURELY 1ndr,
dr,

r'r[_ o(r, =)
r'-o 27”0

2
n

]+(k.s2 —7)gn(r0,r';a)x)}r0dr0 =
0

r'to

dg, (1,1, ®,)

2
. , . 1 o
= lim[7, 1|5.5¢ +lim J. [(k —n—z)gn (1,7 @,)]r,dry} =———; (Note: the second lim is 0 due to Eq. (20))
o0 drO G‘mr'—o' ; 7 : 27
)
ST 1. S0 Rt P L0 I @
-0 dr, dr, 27r'

0 0

= =4, (k)= J,, (k] 2+ D, TH, (k) = HY, (k )]/ 2 = =112k r"); n=—e0,-,=1,0,1,-+- 00

n n+l

= A4,"J, (kY- D, H" (k") =-1/27kr"); (whenn=0)

Combining Egs. (20) and (21) and then writing them in a matrix form, we have:

1 n_ [ (O] N — [ g ¥ A ' 0
4"y (k") =Dy HY (k) = 0 oAb A| k) SHOG] [A] @
A4, J, (kY =D,"H® (k') ==1/27k ") J (k) —HDP (k" D,' —1/Q2rkr")

m

Solving Eq. (22), we get the coefficients:
A=l A= H (k") (k") = J (ke VH (k') = 2i (k1)
0 —H (k") H" (k") A Jolk") 0 __Jolks)
-1/Qrkyry HO®kr" 2kt T k) —UQrks 2mkt . (23)
A=A/ A=—[1/QrkyH (k) A=-[1/Qrkr)H" (k") /[2i (k] = G/ 4)HP (k')
D,'= A,/ A=—{1/Qrk (k) A=-[1/Qrkr)J,(kr")/[2i (zk )] = (i]4)J, (k1)

A=A =

From Egs. (18), (19), and (23), the final solution is given by:

. d,
17/

2 L] QuH k1, (k 1), 7 <d,
d\

d, " . Ty d,
sti) =27 [2 G50 )rdr = SAL Qo dr VS ) + L QH ey dr Uy (k)3 d, <1y <dy (24)
d ﬂ ﬂ d, 0

o

. dy
T _r

2Ll Qoo dr 1 ), n>d,
d

It can be proved that Eq. (24) is exactly the same as Eq. (10) since JHél)(x)xdx =xH!"(x) and
I Jo(x)xdx = xJ,(x) . Thus, there will be resonant peaks or constructive interference at certain k, and dimensions of

the ring as mentioned above. However, unlike Eq. (10), Eq. (24) is more general since Q(r") in Eq. (8) can be any
well-behaved function within the ring 0 <d, <r, <d,, which is the case for a remotely generated radiation force,

although more computations are needed for the integrations in Eq. (24) if O(r") is not a constant.
c¢. Resonance Gain:

The shear wave in free space (no resonance) can be obtained by getting a particular solution to Eq. (8) but
without the boundaries at d, and d, (i.e., O(r) =Q, forall 7, ):

Sref(’b;wx) =-0, /(kle['l) 5 (25)
where the subscript “ref ” means “reference”. The resonance gain of the shear wave at r, =0 is given by [33]:

YRR

Sre_‘/ (rO; a)S)""OZO

S(r; @) ‘
Sre/’(ro;ws)‘rozo

Ao ‘ — k.s‘zlLl ‘A(,‘ , (26)

Ek)= —
®) 0,k 0,

which is a ratio between the amplitude of the shear wave (see Egs. (10) and (13)) produced by a cylindrical ring of
external force and the amplitude of the reference shear wave in Eq. (25) at the center of the ring.

Fig. 3(a) shows a plot of E(k,) versus the shear-wave frequency f, =k, /(27). It is clear that shear wave
resonates at specific frequencies and the peak of the resonance gain increases with the frequency. From Egs. (13)
7




and (26), it can be shown that E(k ) also increases with the size of the ring (d =(d, +d,)/2) and the number of
peaks of E(k,) is reduced as the ring width d, —d, decreases.

Resonance Gain at Center of Ring or Plates shear wave produced by a cylindrical ring of radiation
8 [ e e T ) force (see Fig. 1(a)). (b) Resonance gain of the shear
ol Ring: g;:i-g;‘gg mm N wave produced by two plates of radiation force (see Fig.
cs=1mis 1(b)). Solid lines (black) represent the results of the
continuity boundary conditions at both d; and d, (see Fig.

5 ‘2: 1). Dotted (red) and dashed (blue) lines are resonance
(3, 0 . . gains of the shear waves produced with a constant
g ° ! & 8 amplitude and shear stress at the boundary d;
§ ‘[ MR T TERs) T Mlcos(ks*an)] respectively. In these cases, the resonance gain at some
& st d2=4.1887 mm frequencies can be infinity. A large resonance gain

m/s
=T

increases the SNR of imaging systems. The parameters
used are given in the figure.

(b)
Shear Wave Frequency (KHz)

Fig. 3. Theoretical resonance gains of shear waves over
frequency without attenuation. (a) Resonance gain of the

d. Radiation Force of Longitudinal Wave Produced by a Focused Bessel Beam at Its Focus:

If 7, < a (paraxial condition), the ultrasound longitudinal-wave pressure produced by a focused transducer
(radius a) weighted with an nth-order Bessel function J (a7), where o=0 is the scaling parameter and

i, =X+ is the radial distance of a point (x,,y,) on the transducer aperture, is given by (see Egs. (31) and (32)
of Ref. [21], P. 943 of Ref. [34], and P. 661 of Ref. [35]):

ikF . k2 ‘
T %)e'” @i e i, 1, (@) (k,) 27)

(i)B” (xoayoaz = Faa)) =

where the subscript “ B, ” means nth-order Bessel beam, # is an integer, F' is a focal distance, @ =27/ is an
angular frequency, f is the frequency, k =@/c=2x/A is the wavenumber, A is the wavelength, ¢ is the speed
of sound, k, =kry/F, r, is the radial distance from the beam axis at the focal distance, ¢ is an azimuthal angle,

and J(, {J, (ar)}(k,) is a Hankel transform of J, (arn) : (see Eq. (32) of Ref. [21], P. 619 of Ref. [34], and P. 664 of
Ref. [35]):

2 ead, (ka)d . (aa) - (ka)J, (aa)d ., (ky@)

I o 3 ky#za
36, (an)i (k) = I{Jn(aﬁ)}fn(korl)”ldﬁ = (aa)” —(kya) (28)
(where 1 = —oo,-++,—1,0,1,-++,00) e (ca)J(aa)+ J2, (aa)]-2nd (aa)],, (ca) Ckea
2aa)

At k, =« , there is a peak in Eq. (28) (see Figs. 4 and 5), which means that the sound pressure produced by a
focused Bessel transducer is a cylindrical ring of a radius of 7y =aF /k and the ring thickness becomes zero as
a — o (see Egs. (31) and (32) of Ref. [21]). If =0, Eq. (28) becomes:

e (aa)J, (kya)J, (aaz) - (koa)‘zjo (aa)J, (k,a) , ko
(aa)” —(kya)
2 Jitea)+ I @) -
enik)=y : (29)
a EJinc(aa), ky=0
- @2 L0920k, 2 SO k) ks a and Jy(aa) £ 0
2 (kya) 2

From Eq. (29), it is clear that the asymptotic behavior (&, > o and k, =0) of the sound pressure in Eq. (27) from
the peak pressure on the ring is similar to a Jinc function (defined as Jinc(x) =2J,(x)/x ), which is similar to the
8




beam profile of a focused plane wave produced by a disk transducer of a radius a. Le., if =0 in Egs. (27) and
(29), we have (see Egs. (35) and (36) of Ref. [21], and Eqgs. 2-35 and 4-31 of Ref. [31]):

i N
D, (x,,¥y,2=Fy0) = P (1+ 2”F)e 27" [za’ Jine(kya)] (30)

where the subscript “ P ” means “plane wave”. At k, =0, i.e., at the center of the ring 7, =0, Eq. (29) is given by
(@’ /2)Jinc(axa) . Thus, to produce a ring of radiation force where the sound pressure is 0 at 7, =0, which is

desired, ara should be chosen so that Jinc(aa) (or J,(ca)) is zero, ie.,, o =3.8317/a, 7.0156/a, 10.1735/a,
13.3237/a, and 16.4706/ a , etc.

Radiation Force Simulation of Radiation Forces of Focused Jy(-) and cos(:)

T T T T = = - -1 - -1 g
Focused Bessel Weighting (alfa = 0.5612 mm-1): —Theory (f=35 Mlz-iz, ¢=1500 m/s, a=561.2m™ for Bessel, a = 502.7 m™ for cosine)
[ z=F=100mm p \ Sim Exact 5 mm z=01t0 200 mm
08F D=2a=25mm ) - Sim Binary I || 90 200 |
06k f=35MHz ~ 5 EF 1.0
) ~ S E >
B o4 ¢ =1500m/s \.52 2
2 %7 d-38282mm SRy 2
§, 02 FWHM=1.764mm: | 3 (b) 2
g ok LA — = S >Ex : £
e 10 5 (g) 5 10 8 g E OSE
2 T , . T L3R N
= Focused Cosine Weighting (alfa = 0.5027 mm-1): —Theory N= H ©
1F X : H
IS z=F=100mm 2 Sim Exact _ H £
5 08 D=2a=25mm - Sim Binary =38 E ; S
Z gl f=35MHz % @ E B =
06 QX w 0.0
c¢=1500 m/s oWy .
041 d=3.4286 mm B i
02} FWHM = 15202 mm . 8 »g7x : '
ol Ly N L, h § g E
-10 -5 0 5 10 -
) Lo Q¥ =
Lateral Distance (mm) (9) ™~Transverse

Fig. 4. Radiation forces produced by (a) a focused Bessel Fig. 5. Simulated radiation forces of the same parameters as

beam transducer (see Fig. 1(a)) and (b) a cosine beam
transducer (see Fig. 1(b)). Solid lines (black) were
obtained theoretically with the Rayleigh-Sommerfeld
diffraction formula. Dotted lines (red) are the results of
computer simulations with an exact Bessel or cosine
aperture weighting. Dashed lines (blue) are the same as
dotted lines except that a piecewise (binary) aperture
weighting was used to increase transmit power. The
parameters used are shown in the figure. An experiment
result of the radiation force using a focused Bessel beam
can be found in [30].

those used in Fig. 4. (a) and (b) are transverse (x-y plane
at z = 100 mm, see the vertical pink line) and axial (x-z
plane from z = 0 to 200 mm) profiles, respectively, of the
radiation force produced by a focused Bessel transducer
(see Fig. 1(a)) with an exact aperture weighting. (c) and
(d) are the same as (a) and (b) respectively except that a
piecewise (binary) aperture weighting is used to increase
transmit power. (e) to (h) are the same as (a) to (d)
respectively except that a focused cosine transducer (see
Fig. 1(b)) is used. The color bar shows normalized beam
intensity or radiation force.

Using Eqgs. (27)-(29), the radiation force, i.e., the body force Q(7,) in Eq. (8) or Eq. (24) on the cylindrical ring
can be calculated since the radiation force is proportional to the intensity or the square of the magnitude of the sound
pressure, | ® 5, (X0, .2 =F;0) [*. Thus, the full-width-at-half-maximum (FWHM) width of the cylindrical ring of
the body force is determined by the square of the Jinc function in Eq. (29), i.e., PR},,,, =21, =1.029AF /D, as
explained in the paragraph below Eq. (37) of Ref. [21] since Jinc*(1.61633)=0.5 and thus r, =1.61633F /(ka) =
(1.61633/m)AF /D, where D=2a is the diameter of the transducer. R, in PR}, means the FWHM
resolution, the superscript “2” means “squared”, and the prefix P means focused “plane wave”.

Assuming F =100 mm, D =25 mm, f = 3.5 MHz, and ¢ = 1500 m/s, then A=c¢/f = 0.4286 mm and
PR’,.., = 1.764 mm. If we choose the radius of the ring corresponding to one of the zeros (such as the second zero)
of the J,(ca) function, d =aF /k = 7.0156F /(ka) = 3.8282 mm, we obtain d, =d —(PR},,,, /2) = 2.9462 mm
and d, =d +(PR},,,, /2) =4.7102 mm for Eq. (10). To produce a ring of radius d , the scaling parameter of the

Bessel beam should be & = 7.0156/a = kd / F = 0.5612 mm™ . Given these parameters, a line plot of the radiation
force through the diameter of the ring is give in Fig. 4(a) with n =0 (Figs. 5(a) to 5(d) are the corresponding cross
sections of the radiation force). To increase the total transmission energy and thus increase the radiation force on the
cylindrical ring, both a smaller ring radius and a piecewise (binary) focused Bessel aperture weighting can be used
[19],1i.e., setting J (ar) =1 if J (ar,)=0,and J,(ar)=—-1 otherwise.




II. FIXED SHEAR WAVE APPLITUDE OR STRESS AT THE CYLINDRICAL RING BOUNDARY

Assuming that a cylindrical ring has a radius d, >0 and is vibrating uniformly along z axis at a single
frequency with a fixed amplitude A4 . According to Eq. (10), the shear wave produced inside the ring is given by:
S(r;m,)=A4,"J,(k,1,); where 0< 1, <d, , 31

where 4," is a coefficient to be determined with the continuity boundary condition (i.e., S(r;®,)= A4 at d,):

A" Iy (kd)=A= A" = = S(r;0,) Jolk,ry) - (32)

Jo(kid,) " Jy(kdy)

In this case, it is easy to see that the shear wave produced inside the ring can have Fabry—Perot-type resonances
[29],ie., S(7;@,) =0 as J(k,d,) =0 (or when k d, — 2.4048, 5.5201, 8.6537, 11.7915, and 14.9309, etc) at

certain shear-wave frequencies or ring radii, and the resonance gain (normalized to A4 ) in Eq. (26) will be infinity if
there is no shear-wave attenuation (see red dotted line in Fig. 3(a)). Thus, if such a boundary condition could be
realized via methods such as phase-locked radiation force [26], a large resonance gain (|1/J,(k.d,)|) could be

produced for studying the nonlinear properties of objects such as biological soft tissues.
If at the boundary d,, a harmonic shear stress is uniformly applied along the z axis with a fixed amplitude T,

(N/m?), using Eq. (10), the boundary condition and the resulting shear wave inside the ring is given by:

ds(r; ®,) 1, T,
——=4 _, =T, => u[-AkJ (kd)]=T, = 4)=———""—= S(;0)=—"—"""—"—J,(k . 33
i ar, n=d, — L, yZi i (kd)] 4 Lk J (ke dy) (r;@,) Ltk J,(k.d,) (k1) (33)

In this case, the shear wave inside the cylindrical ring will resonate as J,(k,d,) = 0 (or when kd, — 0, 3.8317,
7.0156, 10.1735, and 13.3237, etc). Le., the resonance gain (normalized to -7, /(uk,)) will be [1/J,(kd,)| (see
blue dashed line in Fig. 3(a)). The boundary conditions in Egs. (32) and (33) can be realized by controlling how the
force is applied remotely or locally in various applications such as NDE.

I11. SHEAR WAVE PRODUCTION WITH TWO PARALLEL PLATES OF RADIATION FORCE

a. Solutions to the Wave Equation:

If the cylindrical ring in Fig. 1(a) is replaced with two infinitely large parallel plates located symmetrically
about x, =0 (see Fig. 1(b)), Eq. (6) becomes a one-dimensional (1D) equation that can be used for a 1D array

transducer commonly used in medical ultrasound imaging systems:
2 2 - .
{ ?__1 2 }E(xo;t) _ 3 (34)
U

875 B C:Z (%557) ?
Assuming that 5(x,;t) =s(x,;0)Z° = S(x,;@,)e 2", G(x,5t) = q(x;)Z° = O(x,)e"™Z°, ¢, (x;;t)=c, is a
constant, k. =, /c,, where Q(x,)=0, is a constant for 0<d, < x,|<d,, and QO(x,)=0 elsewhere, Eq. (8)
becomes a 1D Helmholtz equation:
9
2 . -=, 0<d, gx,|cd
d S(x()z,(lls)+krzS(XO;wr): P 1 | 0| 2'
dx, } }
0 0, Otherwise

(35

Similar to Eq. (10), the solutions to Eq. (35) can be obtained using a general solution to the homogeneous Helmholtz
equation plus a specific solution to the inhomogeneous Helmholtz equation:
(4,"/2)e" +(4," 2)e ™™ = 4,"cos(k.x,), —d, <x,<d,
S(xp;0,) =1 B, """ +C,"e™ % — Q) /(K1) 0<d <x,<d,or —d,<x,<—d, . (36)
D,"e*m, Xy <—d, orx, >d,
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Note that similar to cylindrical ring, the shear wave produced will propagate towards the axis of the transducer in
Fig. 1(b) to form a standing wave given in Eq. (36). During the propagation, the imaging waves can be modulated at
two moments of time as in Figs. 1(d) and Figs. 2(b) for low-sidelobe and high-contrast super-resolution imaging.

Applying the boundary conditions of continuity of displacement and stress to Eq. (36), we have:
(1) Atx, =d, (Displacement Continuity): 4, "cos(k,d,) = B, """ +C,"e ™" —Q, /(k 1)

(2) Atx, =d, (Stress Continuity): d[ 4, "cos(k,x,)]/ dx, |, _, = d[B,"e"" +C,"e”"" ]/ dx, |, _,

(3) Atx, =d, (Displacement Continuity): B,"e*® +C,"e™% —Q, /(k11) = D," e

(4) Atx, =d, (Stress Continuity): d[B,"e"™ +C, "]/ dx, |, _, =d[D,"e"™ ]/ dx, |, _,

= (1) 4,"cos(k, dl)—BO mehd et =~ I(kZu);  (2) — A4,"sin(k.d,)—iB,"e" +iC,"e " =0; . 37
(3) B,"e"% +C,"e %= — D, "% = Q (kX w); 4) B,"e"%m —C,"e % — D "% =0

Solving Eq. (37), we obtain the coefficients 4,",B,",C,", and D," of the shear wave in Eq. (36):

4,7 =10, KD =2 ) B,"=[0, (2K )[-2isink,d,) + "]

38
C,"=[Q, /(2K 1)]e™"; D,"=[0, /(2k*w)][2isin(k.d,) - 2isin(k.d,)] %)

From Eq. (38), it is seen that at certain shear-wave frequencies (related to k) or plate positions (d, and d,), the
coefficients of the shear wave will have peaks (resonance) or zeros (anti-resonance). However, unlike the shear
wave in a cylindrical ring, the maximum resonance gain (normalized to —Q, /(k? ) at the center of the two plates

at x, =0 is 2 and it does not increase as the shear wave frequency increases (see the black solid line in Fig. 3(b)).

As mentioned before, if a Fabry—Perot type of resonance can be established, as in Eq. (32) or (33), the
resonance gain can be very large which increases the SNR. L.e., if at the boundary d,, the shear wave amplitude 4

is a constant, the resonance gain (normalized to 4 ) will be |1/cos(k.d,)| (see red dotted line in Fig. 3(b)). If a
harmonic shear stress of a constant amplitude 7, is applied at the boundary, the resonance gain (normalized to
=T, /(uk,)) will be [1/sin(k,d,)| (see blue dashed line in Fig. 3(b)). Note that the constant displacement A or
shear stress 7, at the boundary d, can be realized by controlling the force applied remotely or locally in various

applications including NDE.

b. Radiation Force of Longitudinal Wave Produced by a Focused Cosine Beam at Its Focus:

The longitudinal ultrasound wave pressure at the focal distance F of a focused beam produced by a transducer
located at the plane z = 0 in rectangular coordinates is given by (see Eq. (28) of Ref. [21]) (Eq. 5-14 of Ref. [31]):
iA'
L e D 118w e ™ ey, = e TN 0k k)5 (39)

. o
D(x,,y,,z=F;0)=——(1+
(X9, 0,2 ) iﬂF(

where k, =kx,/F and k, =ky,/F ,and <i>'1 (x,,y; @) is the weighting function at the transducer aperture on the

coordinates (x,,),) before a physical lens or an electronic focusing is applied. If the transducer is one-dimensional
(uniform over the elevation dimension in y,) and is weighted with a cosine function cos(ex,), where =0 is the
scaling parameter, the ultrasound beam at the focal distance is given by the following 1D Fourier transform:

'ﬂ K i, et ﬂ

B(x),z = F; (U)—f( )e” jcos(ax)e 0% gl _—( et

K
i
)e 2 J' e My,
i 2

(k, +a)sin[(k, —a)al+(k, —a)sin[(k, +a)a]
e

afsinc[(k, —a)a]+sinc[(k, +)al}, k #o

e il | iEs | 204 +sinRaa) ’ (40)
= e S =l +sineaa), k =*a
i V3 o ’
2asinc(aa), k. =0
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where a is the half width of the transducer along the x, direction and sinc(x) = sin(x)/x is the sinc function. Eq.
(40) has two peaks at k, =t or x,=*Fa/k, which are symmetric about the x, =0. To ensure that the

ultrasound pressure is zero at k, =0, from Eq. (40), one should choose sinc(a) = 0 (or, a=nz/a where

n=12,3,---). If =0, we obtain focused plane wave at the focal distance of a 1D array transducer:

. . o | AN L g o | NG~ ) k 41
X,,z=F;w)= +——)e e "ldx = e asine(k, a)],
(%o )= o) j Far e | ol

which is also proportional to the sinc function. Since the square of a sinc function sinc’(x) = 0.5 when x = 1.393,
the FWHM of the focused plane wave in Eq. (41) is given by PR}, =2x,~0.88684F /D . Note that
x=k a=hkxal/F=1393, then x, =1393F /(ka) = 0.4434AF /D, where D =2a is the width of the 1D array

transducer. Choosing F =100 mm, D =25 mm, f = 3.5 MHz, and ¢ = 1500 m/s, then A=c/ f = 0.4286 mm

and PR;,,,, = 1.5202 mm (see Figs. 2(b) and 4(b)). Let r=27/a =0.5027 mm™, the center positions of the peaks
of the radiation force will be k, =kx,/F =t or x, =*d =*Fa/k = £27F /(ka) = £3.4286 mm (see Figs. 2(b)

and 4(b)). Thus, we have d, =d —(PR},,,, /2) = 2.6685 mm and d, =d +(PR},,,, /2) = 4.1887 mm (see Fig.
3(b)). With these parameters, line plots along x, are give in Figs. 2(b) (pink dash-dotted line) and 4(b). As in the

focused Bessel beam case in Subsection 1.d above, a piecewise (binary) cosine aperture weighting can be used to
increase transmit power to produce a stronger radiation force (see Ref. [19]), i.e., setting cos(ar)=1 if

cos(ar;) 20, and cos(ar;) =—1 otherwise (see Figs 4(b), and Figs. 5(e) to 5(h)).

3. RESULTS

Fig. 1 illustrates how a focused shear wave can be produced with a focused Bessel beam (Fig. 1(a), with an
annular or 2D array transducer) or a focused cosine beam (Fig. 1(b), with 1D array transducer) via a radiation force,
and how it can be used to modulate imaging waves for low-sidelobe and high-contrast super-resolution imaging
(Figs. 1(c) and 1(d)). Figs. 2(a) and 2(b) illustrate the super-resolution imaging process quantitatively with focused
shear waves using typical parameters in medical ultrasound imaging, corresponding to Fig. 1(c) and 1(d)
respectively. Figs. 3(a) and 3(b) show the resonance gains of focused shear waves produced with a focused Bessel
beam and a focused cosine beam in Figs. 1(a) and 1(b) respectively. Figs. 4(a) and 4(b) are theoretical and
simulation results of radiation forces produced with the focused Bessel beam and focused cosine beam in Figs. 1(a)
and 1(b) respectively, using typical medical ultrasound imaging parameters. Figs. 5(a)-5(d) and 5(e)-5(h) are the
simulation results of both transverse and axial profiles of radiation forces produced by the focused Bessel and cosine
transducers in Figs. 1(a) and 1(b) respectively, using the parameters given in Figs. 4(a) and 4(b). Since there is a
large depth of field in radiation forces (Figs. 5(b), 5(d), 5(f), and 5(h)), real-time 2D (x, —z plane) super-resolution

imaging is possible. For detailed descriptions of the figures, the readers are referred to the legends of the figures.

4. CONCLUSION

Methods of producing modulators for low-sidelobe and high-contrast super-resolution imaging using focused
shear waves generated remotely by a cylindrical ring or plates (or a focal spot of conventional focused beam) of
radiation forces were studied in details both theoretically and with computer simulations. These shear waves may
resonate to form large peaks under certain boundary conditions to increase signal-to-noise ratio (SNR), and can also
be produced locally. If the modulated imaging waves can interfere coherently before being detected, the sensitivity
and dynamic range, and thus the image resolution can be greatly increased (using small physical particles such as
optically opaque ions as modulators, atomic imaging may be possible). The results show that it is feasible to produce
focused shear waves as modulators for super-resolution imaging using typical parameters used in medical
ultrasound. Because the cylindrical ring or plates of radiation forces have a large depth of field (Fig. 5), real-time 2D
super-resolution imaging with focused shear waves is possible. The study in this paper opens up an opportunity for
super-resolution imaging of mechanical properties (shear-wave amplitude, speed, spectrum, and nonlinearity) of
biological soft tissues deep in the body, and may help to distinguish between benign and malignant tissues.
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